Рассмотрена математическая модель пластины Кирхгофа с учетом инерции вращения ее поперечного сечения. Для такой модели получена система обыкновенных дифференциальных уравнений, описывающая колебания с конечным числом модальных координат, и решена задача оптимального управления с квадратичным функционалом качества. Также приведены результаты численного интегрирования двухточечной задачи при полученном управлении.
Розглянуто математичну модель пластини Кiрхгофа з урахуванням iнерцiї обертання її перетину. Для такої моделi отримано систему звичайних диференцiальних рiвнянь зi скiнченною кiлькiстю модальних координат та розвязано задачу оптимального керування з квадратичним критерiєм якостi. Також наведено результати чисельного iнтегрування двоточкової задачi при отриманому керуваннi.
A mathematical model of the Kirchhoff plate with the rotational inertia of its cross section is considered. For such a model, a system of ordinary differential equations with finite numbers of modal coordinates is derived and the optimal control problem with a quadratic cost is solved. Results of numerical integration of a two-point problem with such a control are presented.