Дан анализ изменения механических свойств титанового сплава Ti−6Al−4V ELI при последовательном добавлении к равноканальному угловому прессованию (РКУП) экструзии, предварительной термообработки и заключительного стабилизирующего отжига. Экспериментально показано, что комплексная термомеханическая обработка, включающая в себя все вышеперечисленные технологические операции, позволяет получить высокие прочностные характеристики с приемлемым уровнем пластических свойств.
Наведено аналіз зміни механічних властивостей титанового сплаву Ti−6Al−4V ELI при послідовному додаванні до рівноканального кутового пресування (РККП) екструзії, попередньої термообробки та завершального стабілізувального відпалу. Експериментально показано, що комплексна термомеханічна обробка, яка включає всі вищеперелічені технологічні операції, дозволяє отримати високі міцнісні характеристики з прийнятним рівнем пластичних властивостей.
For the Ti−6Al−4V ELI alloy, equal-channel angular pressing (ECAP), extrusion, and other technological procedures of intensive plastic deformations result into considerable growth of strength properties: its conventional yield strength goes up by 40% and its ultimate strength becomes 30% higher. At the same time, its relative elongation is halved, and its uniform elongation is reduced by 4 times. Additional thermal treatment does not have a significant effect on strength properties. Preliminary quenching and aging added to the ECAP results in a little drop in the conventional yield strength when the general growth of relative and uniform elongations is observed. And finally, a full set of thermomechanical operations including quenching, aging, ECAP, extrusion and annealing allows further upgrading in the strength properties to their maximum values and getting an increase in relative and uniform elongations if compared to thermomechanical treatment without stabilizing annealing. All examined states demonstrated anisotropy of the conventional yield strength at compression, which equals to 17% in the initial annealed state and is higher than 50% after complex thermomechanical treatment followed-up by extrusion. The growth of conventional yield strength was also observed when the sample was compressed across the axis of the bar, and its decrease, even lower than the value of the initial state, was found when the bar was compressed along its axis. Followed-up stabilizing annealing results into the rise of conventional yield strength at compression for both directions tried (along and across the bar axis) and the reduction of anisotropy down to the level of the initial state and lower.