Методом туннельной спектроскопии исследована плотность электронных состояний манганита La₂/₃Ca₁/₃MnO₃ (LCMO). Показано, что туннельный спектр содержит два вклада – когерентный и некогерентный. Такое разделение спектра характерно для сильнокоррелированных металлических систем. Когерентная часть спектра отвечает за проводимость манганита при низких температурах, а некогерентная – отражается в оптической проводимости σ(v). С увеличением температуры когерентная часть спектра подавляется, что приводит к аномалии в температурной зависимости σ(ν).
Методом тунельної спектроскопії досліджено щільність електронних станів манганіту La₂/₃Ca₁/₃MnO₃ (LCMO). Показано, що тунельний спектр містить дві складові – когерентну і некогерентну. Такий розподіл спектру є характерним для сильнокорельованих металічних систем. Когерентна частина спектру відповідає за провідність манганіту при низьких температурах, а некогерентна – відтворюється в оптичній провідності σ(ν). З ростом температури когерентна частина спектру зменшується, що призводить до аномалії в температурній залежності σ(ν).
The density of electron states of manganite La₂/₃Ca₁/₃MnO₃ (LCMO) has been studied by the tunnel spectroscopy method. The tunnel spectrum is shown to contain two contributions – coherent and incoherent ones. Such separation of the spectrum is typical of strongly correlated metallic systems. The coherent part of the spectrum stands for manganite low-temperature conductivity, the incoherent one is displayed in optical conductivity σ(ν). The coherent part of the spectrum becomes suppressed under temperature increase resulting in the anomaly of σ(ν) temperature dependence.