На примере некоторых ГЦК-металлов с низкой энергией дефектов упаковки показано, что снижение температуры вакуумного осаждения ниже 0,4 Тn, где Тn – температура плавления металла, приводит к существенному повышению прочностных свойств вакуумных конденсатов, связанному с формированием зерен снанодвойниковой субструктурой. Для никеля также наблюдалось заметное увеличение микротвердости конденсатов при снижении температуры их осаждения. В настоящей работе исследовано влияние температуры подложки (в диапазоне температур 150–800 °С) на характеристики микро- и субструктуры вакуумных конденсатов никеля и проведено сопоставление этих характеристик с изменением их микротвердости. Показано, что повышение прочности вакуумных конденсатов при снижении температуры осаждения обусловлено формированием зерен с наноразмерными субзернами, границы которых являются эффективными барьерами для движения дислокаций.
На прикладі деяких ГЦК-металів із низькою енергією дефектів упаковки показано, що зниження температури вакуумного осадження нижче від 0,4Тn, де Тn – температура плавлення металу, призводить до суттєвого підвищення міцнісних властивостей вакуумних конденсатів, пов’язаного з формуванням зерен із нанодвійниковою субструктурою. Для нікелю також спостерігалося помітне збільшення мікротвердості конденсатів при зниженні температури осадження їх. У цій роботі досліджено вплив температурипідкладки (в діапазоні температур 150–800 °С) на характеристики мікро- та субструктури вакуумних конденсатів нікелю й проведено зіставлення цих характеристик зі змінами їхньої мікротвердості. Показано, що підвищення міцності вакуумних конденсатів при зниженні температури осадження обумовлено формуванням зерен із нанорозмірними елементами субструктури, межі яких є ефективними бар’єрами для руху дислокацій.
It was shown that a decreasing of the temperature deposition below 0,4 Тn, where Тn – is the metal melting temperature, results in an essential increasing of the strength properties of the condensates for some fcc metals. Such changes of the strength properties are determined by the nanotwinned structure of the condensates. In case of the nickel condensates a considerable rising of the condensate microhardness at decreasing of the substrate temperature is also observed. Influence of the substrate temperature (in the range of 150–800 °C) on the micro- and substructure of the nickel vacuum condensates is investigated in this work. Comparison between microstructure and microhardness is given. It is shown that an increasing the strength properties of the condensates at a decreasing of the substrate temperature are caused by the nanoscale grain boundaries which are effective barriers for moving dislocations.