Окреслено підхід до аналізу турбулентних коливань, що описуються нелінійними крайовими задачами для рівнянь з частинними похідними. Цей підхід базується на переході до динамічної системи зсувів вздовж розв'язків і використовує поняття ідеальної турбулентності - математичного явища, за якого атрактор нескінченновимірної динамічної системи міститься не у фазовому просторі системи, а у ширшому функціональному просторі і серед "точок" атрактора є фрактальні або й випадкові функції. Описано сценарій турбулентності в системах з регулярною динамікою на атракторі, коли просторово-часова хаотизація системи, зокрема перемішування, автостохастичність, каскадний процес утворення структур, зумовлені дуже складною внутрішньою організацією "точок" атрактора - елементів ширшого функціонального простору. Такий сценарій реалізується у певних ідеалізованих моделях розподілених систем електродинаміки, акустики, радіофізики.
We propose an approach to the analysis of turbulent oscillations described by nonlinear boundary-value problems for partial differential equations. This approach is based on the transition to a dynamical system of shifts along solutions and uses the notion of ideal turbulence (a mathematical phenomenon such that the attractor of an infinite-dimensional dynamical system lies not in the phase space of the system but in a wider functional space and, among attractor “points”, there are fractal or random functions). A scenario for ideal turbulence in systems with regular dynamics on an attractor is described; in this case, the space-time chaotization of a system, in particular, the intermixing, the self-stochastisity, and the cascade process of creation of structures, is due to the very complicated organization of attractor “points” (elements of a certain wider functional space). Such a scenario is available in some idealized models of parameter-distributed systems in electrodynamics, acoustics, radiophysics, etc.