A computational method based on radial basis
functions has been applied to the linear solution
of thin plates. This meshless numerical methodgives high flexibility in the analysis of irregular
geometries, due to its insensivity to spatial dimension.
The multiquadrics approach is used in
this paper. The numerical solution is compared
with Kirchhoff theory for plates.
Виконано лінійний розрахунок напружено-деформованого стану тонких пластин
числовим методом, що базується на використанні мультіквадратичних
радіальних базисних функцій. Показано, що даний метод є досить гнучким
при розрахунках об’єктів зі складною геометрією, оскільки не потребує сіткового розбиття і нечутливий до їх просторових координат. Отримані
числові результати порівнюються з даними розв’язків на основі теорії
пластин Кірхгофа.
Выполнен линейный расчет напряженно-деформированного состояния тонких пластин
численным методом, базирующемся на использовании мультиквадратических радиальных
базисных функций. Показано, что данный метод оказывается весьма гибким при расчетах
объектов со сложной геометрией, поскольку не требует сеточного разбиения и нечувствителен
к их пространственным координатам. Полученные численные результаты сравниваются
с данными решений на основе теории пластин Кирхгофа.