Показати простий запис статті
dc.contributor.author |
Torbin, G. |
|
dc.date.accessioned |
2009-11-19T10:27:51Z |
|
dc.date.available |
2009-11-19T10:27:51Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ. |
en_US |
dc.identifier.issn |
0321-3900 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/4497 |
|
dc.description.abstract |
The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Інститут математики НАН України |
en_US |
dc.title |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
en_US |
dc.type |
Article |
en_US |
dc.status |
published earlier |
en_US |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті