Решается задача построения качественной обучающей выборки для нейронных сетей в прогнозировании. Описана возможность использования гипотезы λ-компактности на этапе построения множества распознаваемых классов. На основе рассмотренных механизмов предложен усовершенствованный алгоритм построения качественной обучающей выборки.
Розв’язується задача побудови якісної навчаючої вибірки для нейронних мереж у прогнозуванні. Описано можливість використання гіпотези λ-компактності на етапі побудови множини класів, що розпізнаються. На основі розглянутих механізмів запропоновано удосконалений алгоритм побудови якісної навчаючої вибірки.
The problem of forming a qualitative training sample for neural networks in forecasting is solved. The possibility of use the hypothesis of λ-compactness at the step of forming an ensemble of recognizable classes is described. An advanced algorithm of forming a qualitative training sample is offered on the basis of the mechanisms considered.