Рассмотрена управляемая система дифференциальных уравнений Лотки - Вольтерры, описывающая процесс развития двух взаимосвязанных популяций хищников и жертв. Система содержит две переменные управления, которые выбираются так, чтобы время перехода к стационарной точке было минимальным. Построены функции управления и соответствующие траектории движения в фазовом пространстве и обоснована их оптимальность.
Розглянуто керовану систему диференціальних рівнянь Лотки–Вольтерри, що описує процес розвитку двох взаємопов’язаних популяцій хижаків та жертв. Система містить дві змінні керування, які обирають так, щоб час переходу до стаціонарної точки був мінімальним. Побудовано функції керування і відповідні траєкторії руху в фазовому просторі та обґрунтовано їхню оптимальність.
We consider a controlled system of Lotka–Volterra differential equations that describes the evolution of two interrelated populations of predators and prey. The system contains two control variables, which are chosen so that the transition time to a stationary point is minimal. In the article, the control functions and the corresponding trajectories of motion in the state space are constructed, and their optimality is substantiated.