Розглядається система диференціальних рівнянь Лотки-Вольтерри з двома змінними керування. Описано оптимальне керування, яке забезпечує перехід до стаціонарної точки за мінімальний час. Знайдено також оптимальне керування в граничному випадку, за умови, що фазові траєкторії лежать поблизу стаціонарної точки. Побудовано оптимальні траєкторії руху у фазовому просторі, що мають вигляд спіралей.
Рассматривается система дифференциальных уравнений Лотки-Вольтерры с двумя переменными управления. Описано оптимальное управление, обеспечивающее переход к стационарной точке за минимальное время. Найдено также оптимальное управление в предельном случае, при условии, что фазовые траектории расположены вблизи стационарной точки. Построены оптимальные траектории движения в фазовом пространстве, имеющие вид спиралей
We consider the system of Lotka-Volterra differential equations with two control variables and describe an optimal control, which provides a transition to a stationary point in a minimum time. We also found an optimal control for the limit case, on condition that the phase trajectories are located near a stationary point. Optimal trajectories of motion in the phase space are constructed; they look like spirals.