Розглянуто задачу без початкової умови з вiльною межею для параболiчного рiвняння зi степеневою нелiнiйнiстю. Доведено теореми єдиностi та iснування. При цьому задачу зведено до задачi типу Стефана з початковою умовою. Встановлено еквiвалентнiсть задач i двостороннi апрiорнi оцiнки для шуканих функцiй. Вивчено поведiнку вiльної межi.
We consider the problem without initial condition with free boundary for a parabolic equation with power nonlinearity. Uniqueness and existence theorems are proved. The problem is reduced to the Stefan-type problem with initial condition. Equivalence of problems and bilateral a priori estimates for the required functions are established. The behavior of the free boundary is investigated.