Найдены достаточные условия бифуркации решений краевых задач в пространстве Гильберта для уравнения Ляпунова. Рассмотрены случаи, когда порождающее уравнение имеет решения и не имеет решений. В качестве примера рассмотрена задача в пространстве последовательностей l2 со счетномерными матрицами.
We find sufficient bifurcation conditions for solutions of boundary-value problems for the Lyapunov equation in a Hilbert space. The cases where the generating equation has or does not have solutions are considered. As an example, we consider the problem in the space l2 of sequences with matrices of countable dimension.