С помощью теоремы Серпинского o континууме доказано, что каждое непрерывное сверху двузначное отображение линейно связного или даже c-связного пространства (пространства, любые две точки которого связываются континуумом) в прямую Зоргенфрея обязательно постоянно.
By using the Sierpiński continuum theorem, we prove that every upper-continuous two-valued mapping of a linearly connected space (or even a c-connected space, i.e., a space in which any two points can be connected by a continuum) into the Sorgenfrey line is necessarily constant.