Запропоновано метод побудови регресійних моделей для систем на основі нечітких правил у випадку, коли реакція систем представлена нечіткими даними. Розроблено алгоритм, який з прийнятною точністю будує адекватну кількість правил Такагі-Сугено регресійної моделі з використанням автоматичної стратегії на основі даних спостережень, що надходять. Побудовано процедуру, що використовується для знаходження максимальної схожості параметрів регресійних моделей, у випадку, коли модель залежить від параметрів у консеквентах нечітких правил.
Предложен метод построения регрессионных моделей для систем на основе нечетких правил, в ситуации, когда реакция систем представлена нечеткими данными. Разработан алгоритм, который с приемлемой точностью строит адекватное количество правил Такаги-Сугено регрессионной модели с использованием автоматической стратегии на основе поступающих данных наблюдений. Построена процедура, которая используется для нахождения максимального сходства параметров регрессионных моделей, в случае, когда модель зависит от параметров в консеквентах нечетких правил.
A method for construction of regression models for systems based on fuzzy rules in situation, when reaction of a system is presented by fuzzy data, is proposed. An algorithm, which builds an adequate amount of Takagi-Sugeno rules for regression model with a reasonable accuracy and uses an automated strategy based on incoming data of observations, is developed. A procedure used for finding the maximum parameter similarity of regression models when the model depends on parameters in consequents of fuzzy rules, is constructed.