В работе представлены результаты моделирования температурных полей, напряжений и деформаций при формировании аддитивной многослойной конструкции из алюминиевого сплава 1561, низколегированной конструкционной стали марки 09Г2С и титанового сплава марки Grade 2. На основании экспериментальных результатов, полученных в ИЭС им. Е. О. Патона, при аддитивных наплавках данных материалов проведено компьютерное моделирование с целью улучшения технологии проведения процесса. В ходе расчетов проанализировано влияние алгоритма последовательности нанесения аддитивных слоев (наплавление цилиндрической оболочки по кольцу или по спирали) на распределение температур при наплавке и ее устойчивость к внешним нагрузкам. Установлено, что при формировании цилиндрических оболочек аддитивным способом целесообразно использовать технологию наплавления по спирали и применять менее теплопроводные конструкционные материалы (конструкционные стали, титановые сплавы).
В роботі представлені результати моделювання температурних полів, напружень і деформацій при формуванні адитивної багатошарової конструкції з алюмінієвого сплаву 1561, низьколегованої конструкційної сталі марки 09Г2С і титанового сплаву марки Grade 2. На підставі експериментальних результатів, отриманих в ІЕЗ ім. Є. О. Патона, при наплавленні адитивних шарів з даних матеріалів проведено комп’ютерне моделювання з метою підвищення продуктивності адитивного процесу. В ході розрахунків проаналізовано алгоритм послідовності нанесення адитивних шарів (наплавлення циліндричної оболонки по кільцю або по спіралі) на розподіл температур в оболонці та параметри її стійкості до зовнішніх навантажень. Встановлено, що при формуванні циліндричних оболонок адитивним способом доцільно використовувати технологію наплавлення по спіралі і застосовувати менш теплопровідні матеріали (конструкційні сталі, титанові сплави).
The work presents the results of modeling the temperature fields, stresses and deformations during formation of the additive multi-layer structure of aluminium alloy 1561, low-alloy structural steel of 09G2s grade and titanium alloy Grade 2. On the basis of experimental results, obtained at the E.O. Paton Electric Institute, the computer modeling was carried out during the additive surfacing of these materials to improve the technique of the process conducting. In the course of calculations the effect of algorithm of successive deposition of additive layers (surfacing of cylindrical shell around the circumference or in spiral) on distribution of temperatures during surfacing and its resistance to external loads was analyzed. It was established that during the formation of cylindrical shells by an additive method it is rational to apply the technology of surfacing in spiral and to use the less heat-conducting structural materials (structural steels, titanium alloys).