У просторах Lψ(Tm) періодичних функцій з метрикою ρ(f,0)ψ=∫Tmψ(|f(x)|)dx, де ψ — функція типу модуля неперервності, досліджено пряму теорему Джексона у випадку апроксимації тригонометричними поліномами. Доведено, що пряма теорема Джексона має місце тоді і тільки тоді, коли нижній показник розтягнення функції ψ не дорівнює нулеві.
In the spaces Lψ(Tm) of periodic functions with metric ρ(f,0)ψ=∫Tmψ(|f(x)|)dx , where ψ is a function of the type of modulus of continuity, we study the direct Jackson theorem in the case of approximation by trigonometric polynomials. It is proved that the direct Jackson theorem is true if and only if the lower dilation index of the function ψ is not equal to zero