Пусть G — ограниченная область с жордановой границей, гладкой во всех точках, за исключением одной, и угол, который в этой точке образует граница, не является нулевым. Доказана гипотеза Кореваара о порядке приближения многочленами конформного отображения этой области в круг, а также установлена поточечная оценка величины приближения.
Let G be a bounded domain with a Jordan boundary that is smooth at all points except a single point at which it forms a nonzero angle. We prove Korevaar’s conjecture on the order of polynomial approximation of a conformal mapping of this domain into a disk. We also obtain a pointwise estimate for the error of approximation.