Одержано достатні умови для зображення функції у вигляді абсолютно збіжного інтеграла Фур'є. Ці умови наведено у термінах сумісної поведінки функції та її похідних на нескінченності, їх ефективність і точність перевіряються на відомому прикладі. Розглянуто також радіальні функції довільного числа змінних.
We obtain sufficient conditions for the representability of a function in the form of an absolutely convergent Fourier integral. These conditions are given in terms of the joint behavior of the function and its derivatives at infinity, and their efficiency and exactness are verified with the use of a known example. We also consider radial functions of an arbitrary number of variables.