Исследованы свойства фундаментального решения и установлена корректная разрешимость задачи Коши для одного класса вырожденных уравнений типа Колмогорова с {p→,h→}-параболической частью по основной группе переменных и неположительным векторным родом в случае, когда решения являются бесконечно дифференцируемыми функциями, а их начальные значения могут быть обобщенными функциями типа ультрараспределений Жевре.
We study the properties of the fundamental solution and establish the correct solvability of the Cauchy problem for a class of degenerate Kolmogorov-type equations with {p→,h→}-parabolic part with respect to the main group of variables and nonpositive vector genus in the case where the solutions are infinitely differentiable functions and their initial values are generalized functions in the form of Gevrey ultradistributions.