Вивчається асимптотична поведінка розв'язків задачі що описує малi рухи в'язкої нестисливої рідини, яка заповнює об'єм Ω, з великою кількістю змулених у ній дрібних твердих взаємодіючих частинок, що концентруються у малому околі деякої гладкої поверхні Γ ⊂ Ω. Доведено, що при певних умовах границя цих розв'язків задовольняє вихідні рівняння в області Ω\Γ та деякі усереднені крайові умови типу умов спряження на Γ.
We study the asymptotic behavior of solutions of the problem that describes small motions of a viscous incompressible fluid filling a domain Ω with a large number of suspended small solid interacting particles concentrated in a small neighborhood of a certain smooth surface Γ ⊂ Ω. We prove that, under certain conditions, the limit of these solutions satisfies the original equations in the domain Ω\Γ and some averaged boundary conditions (conjugation conditions) on Γ.