Let Wn(K) be the Lie algebra of derivations of the polynomial algebra K[X] := K[x1, . . . , xn] over an
algebraically closed field K of characteristic zero. A subalgebra L ⊆ Wn(K) is called polynomial if it is
a submodule of the K[X]-module Wn(K). We prove that the centralizer of every nonzero element in L is
abelian provided that L is of rank one. This fact allows to classify finite-dimensional subalgebras in polynomial
Lie algebras of rank one.
Нехай Wn(K) — алгебра Лi диференцiювань полiномiальної алгебри K[X] := K[x1, . . . , xn] над алгебраїчно замкненим полем K характеристики нуль. Пiдалгебра L ⊆ Wn(K) називається полiномiальною,
якщо вона є пiдмодулем K[X]-модуля Wn(K). Доведено, що централiзатор кожного ненульового елемента з L є абелевим у випадку, коли L має ранг 1. Це дає можливiсть класифiкувати скiнченновимiрнi
пiдалгебри полiномiальних алгебр Лi рангу 1.