Кольцо R имеет стабильный ранг 1,5, если для каждой тройки ненулевых взаимно простых слева элементов а,b,c этого кольца существует такое r, что элементы a+br, c взаимно просты слева. Пусть R — коммутативная область Безу. Доказано, что кольцо M₂(R) имеет стабильный ранг 1,5 тогда и только тогда, когда кольцо R имеет тот же стабильный ранг.
A ring R has a stable range 1.5 if, for every triple of left relatively prime nonzero elements a, b, and c in R, there exists r such that the elements a+br and c are left relatively prime. Let R be a commutative Bezout domain. We prove that the matrix ring M₂(R) has the stable range 1.5 if and only if the ring R has the same stable range.