Motivated by the formula, we investigate factorizations of the lower-triangular Toeplitz matrix with (i; j )th entry equal to x i−j via the Pascal matrix. In this way, a new computational approach to the generalization of the binomial theorem is introduced. Numerous combinatorial identities are obtained from these matrix relations.
На основi формули, було розглянуто факторизацiї нижньотрикутної матрицi Теплiца, (i,j)-й елемент якої дорiвнює xi−j, з використанням матрицi Паскаля. Тим самим уведено новий обчислювальний пiдхiд до узагальнення бiномiальної теореми. Iз використанням цих матричних спiввiдношень отримано численнi комбiнаторнi тотожностi.