A theorem on the existence of solutions and their continuous dependence upon initial boundary conditions is proved. The method of bicharacteristics is used to transform the mixed problem into a system of integral functional equations of the Volterra type. The existence of solutions of this system is proved by the method of successive approximations using theorems on integral inequalities. Classical solutions of integral functional equations lead to generalized solutions of the original problem. Differential equations with deviated variables and differential integral problems can be obtained from the general model by specializing given operators.
Доведено теорему про існування розв'язків та їх неперервну залежність від початкових граничних умов. Для перетворення мішаної задачі у систему інтегральних функціональних рівнянь типу Вольтерра використано метод біхарактеристик. Існування розв'язків цієї системи доведено за допомогою методу послідовних наближень та теорем про інтегральні нерівності. Класичні розв'язки інтегральних функціональних рівнянь приводять до узагальнених розв'язків початкової задачі. Із загальної моделі за допомогою конкретизації заданих операторів можна отримати диференціальні рівняння із змінними, що відхиляються, та диференціальні інтегральні задачі.