We study the properties of ⊕-cofinitely radical supplemented modules, or, briefly, cgs ⊕-modules. It is shown that a module with summand sum property (SSP) is cgs ⊕ if and only if M/w Loc⊕ M (w Loc⊕ M is the sum of all w-local direct summands of a module M) does not contain any maximal submodule, that every cofinite direct summand of a UC-extending cgs ⊕-module is cgs ⊕, and that, for any ring R, every free R-module is cgs ⊕ if and only if R is semiperfect.
Досліджено властивості ⊕-кофінітно радикальних поповнених модулів або скорочено cgs ⊕-модулів. Показано, що модуль із властивістю суми доданків SSP є cgs⊕-модулем тоді і тільки тоді, колиM/wLoc⊕M (wLoc⊕M — сума всіх w-локальних прямих доданків модуля M) не містить жодного максимального субмодуля; кожний прямий доданок UC-розширюваного cgs⊕-модуля є cgs⊕-модулем; для будь-якого кільця R кожний вільний R-модуль є cgs⊕-модулем тоді і тільки тоді, коли R є напівперфектним.