Вивчається потiк Арратья x(u,t). Доведено, що x(⋅,t) — марковський процес, фазовим простором якого є деяка пiдмножина K простору Скорохода. Введено поняття сумарного локального часу в нулi для потоку Арратья. Доведено, що воно є адитивним, невiд’ємним, неперервним функцiоналом вiд потоку, i обчислено його характеристику.
We study an Arratia flow x(u,t) It is proved that x(∙,t) is a Markov process whose phase space is a certain subset K of the Skorokhod space. We introduce the notion of total local time at zero for an Arratia flow. We prove that it is an additive, nonnegative, continuous functional of the flow and calculate its characteristic.