Our main interest is an analog of a Cauchy-type integral for the theory of the Moisil-Theodoresco system of differential equations in the case of a piecewise-Lyapunov surface of integration. The topics of the paper concern theorems that cover basic properties of this Cauchy-type integral: the Sokhotskii-Plemelj theorem for it as well as a necessary and sufficient condition for the possibility of extending a given Hölder function from such a surface up to a solution of the Moisil-Theodoresco system of partial differential equations in a domain. A formula for the square of a singular Cauchy-type integral is given. The proofs of all these facts are based on intimate relations between the theory of the Moisil-Theodoresco system of partial differential equations and some versions of quaternionic analysis.
Роботу в основному присвячено вивченню аналога інтеграла типу Коші для теорії систем Моісіл-Теодореско диференціальних рівнянь у випадку кускової поверхні інтегрування Ляпунова. Розглядаються теореми, що охоплюють базові властивості цього інтеграла типу Коші, а саме теорема Сохоцького - Племель для нього, а також необхідна і достатня умова продовжуваності заданої функції Гельдера з названої вище поверхні до розв'язку системи Моісіл - Теодореско диференціальних рівнянь з частинними похідними в області. Наведено формулу квадрата сингулярного інтеграла типу Коші. Доведення всіх цих фактів базується на близьких зв'язках між теорією систем Моісіл - Теодореско диференціальних рівнянь з частинними похідними і деякими версіями кватерніонного аналізу.