Доведено, що якщо в матриці ймовірностей переходу регулярного ланцюга Маркова від рядка відняти деякий рядок, а потім видалити цей рядок і відповідний стовпець, то спектральний радіус отриманої таким способом матриці менший за одиницю. Цю властивість регулярного ланцюга Маркова використано при побудові ітераційного процесу для розв'язання системи рівнянь Ховарда, що зустрічається в керованих марковських ланцюгах з одним ергодичним класом і, можливо, з незворотними станами.
We prove that if a certain row of the transition probability matrix of a regular Markov chain is subtracted from the other rows of this matrix and then this row and the corresponding column are deleted, then the spectral radius of the matrix thus obtained is less than 1. We use this property of a regular Markov chain for the construction of an iterative process for the solution of the Howard system of equations, which appears in the course of investigation of controlled Markov chains with single ergodic class and, possibly, transient states.