We derive an explicit formula for the Jacobi field that is acting in an extended Fock space and corresponds to an ( R -valued) Lévy process on a Riemannian manifold. The support of the measure of jumps in the Lévy–Khintchine representation for the Lévy process is supposed to have an infinite number of points. We characterize the gamma, Pascal, and Meixner processes as the only Lévy process whose Jacobi field leaves the set of finite continuous elements of the extended Fock space invariant.
Виведено явну формулу для поля Якобі, що діє в розширеному фоківському просторі і відповідає деякому ( R-значному) процесу Леві на рімановому многовиді. Припускається, що міра стрибків у зображенні Леві - Хінчина для процесу Леві має носій з нескінченного числа точок. Гамма-, Паскаль- і Мейкснер-процеси характеризуються як такі, для яких відповідне поле Якобі залишає інваріантною множину фінітних неперервних елементів розширеного фоківського простору.