Quantum systems of particles interacting via an effective electromagnetic potential with zero electrostatic component are considered (magnetic interaction). It is assumed that the j th component of the effective potential for n particles equals the partial derivative with respect to the coordinate of the jth particle of “magnetic potential energy” of n particles almost everywhere. The reduced density matrices for small values of the activity are computed in the thermodynamic limit for d-dimensional systems with short-range pair magnetic potentials and for one-dimensional systems with long-range pair magnetic interaction, which is an analog of the interaction of three-dimensional Chern-Simons electrodynamics (“magnetic potential energy” coincides with the one-dimensional Coulomb (electrostatic) potential energy).
Розглядаються квантові системи частинок, що взаємодіють за допомогою ефективного електромагнітного потенціалу з нульовою електростатичною компонентою (магнітна взаємодія). Припускається, що j$-та компонента ефективного потенціалу n частинок збігається з частинною похідною за координатою j-ї частинки „магнітної потенціальної енергії" n частинок майже скрізь. Обчислено редуковані матриці густини в термодинамічній границі при малих значеннях активності частинок для d-вимірних систем з короткодіючим парним потенціалом взаємодії та одновимірних систем з далекосяжною магнітною взаємодією, яка є аналогом взаємодії у 3 -вимірній електродинаміці Черна-Саймонса („магнітна потенціальна енергія" збігається з одно-вимірною кулонівською (електростатичною) потенціальною енергією).