Показати простий запис статті
dc.contributor.author |
Farsad, F. |
|
dc.contributor.author |
Madanshekaf, A. |
|
dc.date.accessioned |
2019-06-18T18:07:06Z |
|
dc.date.available |
2019-06-18T18:07:06Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets / F. Farsad, A. Madanshekaf // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 235-249. — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:06F05, 18A32, 18G05, 20M30, 20M50. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/156632 |
|
dc.description.abstract |
Let S be a pomonoid. In this paper, Pos-S, the category of S-posets and S-poset maps, is considered. One of the main aims of this paper is to draw attention to the notion of weak factorization systems in Pos-S. We show that if S is a pogroup, or the identity element of S is the bottom (or top) element, then (DU,SplitEpi) is a weak factorization system in Pos-S, where DU and SplitEpi are the class of du-closed embedding S-poset maps and the class of all split S-poset epimorphisms, respectively. Among other things, we use a fibrewise notion of complete posets in the category Pos-S/B under a particular case that B has trivial action. We show that every regular injective object in Pos-S/B is topological functor. Finally, we characterize them under a special case, where S is a pogroup. |
uk_UA |
dc.description.sponsorship |
The authors are very grateful to the anonymous referee for reading the paper at least twice and giving very helpful suggestions. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Weak factorization systems and fibrewise regular injectivity for actions of pomonoids on posets |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті