Анотація:
Let G be a finite group and let Λ = ⊕g∈GΛg be a
strongly G-graded R-algebra, where R is a commutative ring with
unity. We prove that if R is a Dedekind domain with quotient field
K, Λ is an R-order in a separable K-algebra such that the algebra
Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order.
Moreover, we prove that the induction functor ind : ModΛH →
ModΛ defined in Section 3, for a subgroup H of G, commutes with
the standard duality functor.