Анотація:
We define a wreath product of a Lie algebra L
with the one-dimensional Lie algebra L1 over Fp and determine
some properties of this wreath product. We prove that the Lie
algebra associated with the Sylow p-subgroup of finite symmetric
group Spm is isomorphic to the wreath product of m copies of L1.
As a corollary we describe the Lie algebra associated with Sylow
p-subgroup of any symmetric group in terms of wreath product of
one-dimensional Lie algebras.