Показано, что уравнение Фоккера — Планка — Колмогорова относительно амплитуды и фазы, в стационарном случае, может быть приведено к уравнению в частных производных первого порядка, которое называется приведенным стационарным уравнением Фоккера — Планка — Колмогорова. Предложен один способ для приближенного решения этого приведенного уравнения, не требующий предположения о малости нелинейности системы и интенсивности случайных воздействий.
It is shown that the Fokker-Planck-Kolmogorov equation in terms of amplitude and phase may, in the stationary case, be reduced to a first order partial differential equation which we call the stationary reduced Fokker-Planck-Kolmogorov. A method for approximate solution of the reduced equation is presented which does not need assumptions on the smallness of nonlinearity of a system and intensity of random influences.