Розглядаються інтеграли ∫fdμ від дійсних функцій за L₀-значними мірами. Дається означення збіжності дійсних функцій за квазімірою та, як частинний випадок, за L₀-значною мірою. Для таких видів збіжності одержані умови збіжності за ймовірністю для інтегралів за L₀-значними мірами, аналогічні умовам рівномірної інтег ровності та теоремі Лебега.
We study integrals ∫fdμ of real functions over L₀-valued measures. We give a definition of convergence of real functions in quasimeasure and, as a special case, in L₀-measure. For these types of convergence, we establish conditions of convergence in probability for integrals over L₀-valued measures, which are analogous to the conditions of uniform integrability and to the Lebesgue theorem.