Показати простий запис статті
dc.contributor.author |
Pawlik, B.T. |
|
dc.date.accessioned |
2019-06-16T14:38:23Z |
|
dc.date.available |
2019-06-16T14:38:23Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs / B.T. Pawlik // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 264–281. — Бібліогр.: 6 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:20B35, 20D20, 20E22, 05C25. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/155248 |
|
dc.description.abstract |
Base (minimal generating set) of the Sylow 2-subgroup of S₂n is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup Pn(2) of S₂n acts by conjugation on the set of all bases. In presented paper the~stabilizer of the set of all diagonal bases in Sn(2) is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly 2n−1 diagonal bases and 2²n−²n bases at all. Recursive construction of Cayley graphs of Pn(2) on diagonal bases (n≥2) is proposed. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті