Показати простий запис статті
dc.contributor.author |
Hannusch, C. |
|
dc.contributor.author |
Lakatos, P. |
|
dc.date.accessioned |
2019-06-16T10:56:43Z |
|
dc.date.available |
2019-06-16T10:56:43Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:94B05, 11T71, 20C05. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/155203 |
|
dc.description.abstract |
The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes. |
uk_UA |
dc.description.sponsorship |
Research of the first author was partially supported by funding of EU’s FP7/2007-2013 grant No. 318202. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті