Проведена симетрійна редукція нелінійного п'ятивимірного хвильового рівняння до диференціальних рівнянь із меншою кількістю незалежних змінних з використанням розщеплюваних підгруп узагальненої групи Пуанкаре P(1,4). На основі розв'язків редукованих рівнянь побудовані деякі класи точних розв'язків досліджуваного рівняння.
By using decomposable subgroups of the generalized Poincaré group P(1,4), we perform a symmetry reduction of a nonlinear five-dimensional wave equation to differential equations with a smaller number of independent variables. On the basis of solutions of the reduced equations, we construct some classes of exact solutions of the equation under consideration.