Показати простий запис статті
dc.contributor.author |
Yahya Talebi |
|
dc.contributor.author |
A. R. Moniri Hamzekolaei |
|
dc.contributor.author |
Derya Keskin Tutuncu |
|
dc.date.accessioned |
2019-06-16T05:31:52Z |
|
dc.date.available |
2019-06-16T05:31:52Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
H -supplemented modules with respect to a preradical/ Yahya Talebi, A. R. Moniri Hamzekolaei, Derya Keskin Tutuncu // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 116–131. — Бібліогр.: 16 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification:16S90, 16D10, 16D70, 16D99. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154821 |
|
dc.description.abstract |
Let M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that (A+D)/D⊆τ(M/D) and (A+D)/A⊆τ(M/A). Let τ be a cohereditary preradical. Firstly, for a duo module M=M₁⊕M₂ we prove that M is τ-H-supplemented if and only if M₁ and M₂ are τ-H-supplemented. Secondly, let M=⊕ⁿi=1Mi be a τ-supplemented module. Assume that Mi is τ-Mj-projective for all j>i. If each Mi is τ-H-supplemented, then M is τ-H-supplemented. We also investigate the relations between τ-H-supplemented modules and τ-(⊕-)supplemented modules. |
uk_UA |
dc.description.sponsorship |
The authors would like to thank Prof. R. Wisbauer and the referee for their helpfulcomments and carefully reading this article |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
H -supplemented modules with respect to a preradical |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті