Abstract. Let M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that $(A+D)/D \subseteq \tau(M/D)$ and $(A+D)/A \subseteq \tau(M/A)$. Let τ be a cohereditary preradical. Firstly, for a duo module $M = M_1 \oplus M_2$ we prove that M is τ-H-supplemented if and only if M_1 and M_2 are τ-H-supplemented. Secondly, let $M = \bigoplus_{i=1}^{n} M_i$ be a τ-supplemented module. Assume that M_i is τ-M_j-projective for all $j > i$. If each M_i is τ-H-supplemented, then M is τ-H-supplemented. We also investigate the relations between τ-H-supplemented modules and τ-(\oplus)-supplemented modules.

Introduction

Throughout this paper, R denotes an associative ring with identity and modules are unital right R-modules. We use $N \leq M$ and $N \leq_d M$ to signify that N is a submodule and a direct summand of M, respectively.

A functor τ from the category of the right R-modules Mod $- R$ to itself is called a preradical if it satisfies the following properties:

i) For any R-module M, $\tau(M)$ is a submodule of an R-module M,

ii) If $f : M' \to M$ is an R-module homomorphism, then $f(\tau(M')) \subseteq \tau(M)$ and $\tau(f)$ is the restriction of f to $\tau(M')$.

The authors would like to thank Prof. R. Wisbauer and the referee for their helpful comments and carefully reading this article.

2000 Mathematics Subject Classification: 16S90, 16D10, 16D70, 16D99.

Key words and phrases: H-supplemented module, τ-H-supplemented module, τ-lifting module.
It is well known if \(K \) is a direct summand of \(M \), then \(\tau(K) = \tau(M) \cap K \) for a preradical \(\tau \). A preradical \(\tau \) is said to be cohereditary if, for every \(M \in \text{Mod} - R \) and every submodule \(N \) of \(M \), \(\tau(M/N) = (\tau(M) + N)/N \). We refer to [3] for details concerning radicals and preradicals. In this paper, \(\tau \) will be a preradical unless otherwise stated. Recall that a module \(M \) has the Summand Sum Property, (SSP) if the sum of any two direct summands of \(M \) is again a direct summand (see [4]).

Let \(M \) be a module. A submodule \(X \) of \(M \) is called fully invariant, if for every \(f \in \text{End}(M) \), \(f(X) \subseteq X \). The module \(M \) is called a duo module, if every submodule of \(M \) is fully invariant. The submodule \(A \) of \(M \) is called projection invariant in \(M \) if \(f(A) \subseteq A \), for any idempotent \(f \in \text{End}(M) \). A submodule \(K \) of \(M \) is called small in \(M \) (denoted by \(K \ll M \)) if \(N + K \neq M \) for any proper submodule \(N \) of \(M \).

Lifting modules were defined and studied by many authors. \(H \)-supplemented modules were introduced in [11] as a generalization of lifting modules. According to [11], a module \(M \) is called \(H \)-supplemented if for every submodule \(A \) of \(M \) there exists a direct summand \(D \) of \(M \) such that \(A + X = M \) if and only if \(D + X = M \) for any submodule \(X \) of \(M \). For more information about \(H \)-supplemented modules we refer the reader to [8], [10] and [11]. A module \(M \) is called \(\oplus \)-supplemented if for every submodule \(N \) of \(M \) there exists a direct summand \(D \) of \(M \) such that \(M = N + D \) and \(N \cap D \ll D \). According to [15], a module \(M \) is semiperfect if every factor module of \(M \) has a projective cover. By [15, 41.14 and 42.1], if \(P \) is projective, then \(P \) is semiperfect if and only if for every submodule \(K \) of \(P \) there exists a decomposition \(K = A \oplus B \) such that \(A \) is a direct summand of \(P \) and \(B \ll P \). By [5, Lemma 1.2] a projective module is \(\oplus \)-supplemented if and only if it is semiperfect.

In [2], for a radical \(\tau \), Al-Takhman, Lomp and Wisbauer defined and studied the concept of \(\tau \)-lifting, \(\tau \)-supplemented and \(\tau \)-semiperfect modules. Following [2], a module \(M \) is called \(\tau \)-lifting if every submodule \(N \) of \(M \) has a decomposition \(N = A \oplus B \) such that \(A \) is a direct summand of \(M \) and \(B \subseteq \tau(M) \) and they call \(M \) \(\tau \)-supplemented if for every submodule \(N \) of \(M \) there exists a submodule \(K \) of \(M \) such that \(N + K = M \) and \(N \cap K \subseteq \tau(K) \) (In this case \(K \) is called a \(\tau \)-supplement of \(N \) in \(M \)). They call a module \(M \) \(\tau \)-semiperfect if for every submodule \(N \) of \(M \), \(M/N \) has a projective \(\tau \)-cover. In this paper we define \(\tau \)-\(H \)-supplemented modules and investigate the general properties of such modules.

In Section 1 we will define \(\tau \)-\(H \)-supplemented modules and give an equivalent condition for such modules. Also we obtain some conditions which under the factor module of a \(\tau \)-\(H \)-supplemented module will be \(\tau \)-\(H \)-supplemented. Let \(M \) be a \(\tau \)-\(H \)-supplemented module for a cohereditary preradical \(\tau \). Then
(1) If M is a distributive module, then M/X is τ-H-supplemented for every submodule X of M.

(2) Let $N \leq M$ such that for each decomposition $M = M_1 \oplus M_2$ we have $N = (N \cap M_1) \oplus (N \cap M_2)$. Then M/N is τ-H-supplemented.

(3) Let X be a projection invariant submodule of M. Then M/X is τ-H-supplemented. In particular, for every fully invariant submodule A of M, M/A is τ-H-supplemented (Corollary 1).

In Section 2 we will study direct summands of τ-H-supplemented modules. We show that, if τ is a cohereditary preradical, every direct summand of a τ-H-supplemented module with SSP is τ-H-supplemented (Theorem 2).

In Section 3 we will study direct sums of τ-H-supplemented modules. Let τ be a cohereditary preradical. Let $M = M_1 \oplus M_2$ be a duo module. Then M is τ-H-supplemented if and only if M_1 and M_2 are τ-H-supplemented (Theorem 4). Let τ be a cohereditary preradical. Let $M = \oplus_{i=1}^{n}M_i$ be a τ-supplemented module. Assume that M_i is τ-M_j-projective for all $j > i$. If each M_i is τ-H-supplemented, then M is τ-H-supplemented (Corollary 4).

In Section 4 we will obtain the relations between τ-H-supplemented modules and the other modules. Let τ be a cohereditary preradical. Let M be a projective module such that every τ-supplement submodule of M is a direct summand. The following are equivalent: (Theorem 6)

(1) M is τ-supplemented;
(2) M is τ-lifting;
(3) M is amply τ-supplemented;
(4) M is τ-H-supplemented and $\tau(M)$ is QSL in M;
(5) M is τ-\oplus-supplemented.

1. Factor modules of τ-H-supplemented modules

In this section we will define τ-H-supplemented modules and give an equivalent condition for a module to be τ-H-supplemented. Also we investigate some conditions for factor modules of a τ-H-supplemented module to be τ-H-supplemented.

Keskin Tütüncü, Nematollahi and Talebi give equivalent conditions for a module to be H-supplemented (see [8, Theorem 2.1]). Now we give the definition of a τ-H-supplemented module based on their definition.

Definition 1. Let M be a module. Then M is τ-H-supplemented in case for every $A \leq M$ there exists a direct summand D of M such that $(A + D)/A \subseteq \tau(M/A)$ and $(A + D)/D \subseteq \tau(M/D)$.
In this paper, \(\tau\)-\(H \)-supplement will mean that a direct summand \(D \) of \(M \) exists with the stated inclusions in Definition 1. The definition shows that every \(\tau \)-lifting module is \(\tau \)-\(H \)-supplemented.

Next we give an equivalent condition for a module to be \(\tau \)-\(H \)-supplemented.

Proposition 1. Let \(M \) be a module. Then \(M \) is \(\tau \)-\(H \)-supplemented if and only if for each \(A \leq M \) there exists a direct summand \(D \) of \(M \) and a submodule \(X \) of \(M \) such that \(A \subseteq X, D \subseteq X, X/A \subseteq \tau(M/A) \) and \(X/D \subseteq \tau(M/D) \).

Proof. (\(\Rightarrow \)) It is clear.

(\(\Leftarrow \)) Let \(A \leq M \). By assumption, there exist a direct summand \(D \) of \(M \) and \(X \leq M \) such that \((A + D)/A \subseteq X/A \subseteq \tau(M/A) \) and \((A + D)/D \subseteq X/D \subseteq \tau(M/D) \). Hence \(M \) is \(\tau \)-\(H \)-supplemented. \(\square \)

A factor module of a \(\tau \)-\(H \)-supplemented module need not be \(\tau \)-\(H \)-supplemented in general. Before giving a counter example to the fact that a factor module of a \(\tau \)-\(H \)-supplemented module need not be \(\tau \)-\(H \)-supplemented in case \(\tau = \text{Rad} \), we have to mention the following definitions:

A commutative ring \(R \) is a **valuation ring** if it satisfies one of the following three equivalent conditions:

1. For any two elements \(a \) and \(b \), either \(a \) divides \(b \) or \(b \) divides \(a \).
2. The ideals of \(R \) are linearly ordered by inclusion.
3. \(R \) is a local ring and every finitely generated ideal is principal.

A module \(M \) is called **finitely presented** if \(M \cong F/K \) for some finitely generated free module \(F \) and finitely generated submodule \(K \) of \(M \).

Example 1. Let \(R \) be a commutative local ring which is not a valuation ring and let \(n \geq 2 \). By [16, Theorem 2], there exists a finitely presented indecomposable module \(M = R^{(n)}/K \) which cannot be generated by fewer than \(n \) elements. By [5, Corollary 1.6], \(R^{(n)} \) is \(\bigoplus \)-supplemented and hence \(H \)-supplemented by [9, Proposition 2.1]. Being finitely generated, \(R^{(n)} \) is \(\text{Rad-H} \)-supplemented. Since \(M \) is not cyclic, it is not \(\bigoplus \)-supplemented, and hence not \(H \)-supplemented. Since \(M \) is finitely generated, it is not \(\text{Rad-H} \)-supplemented. (Note that since \(R/\text{Jac}R \) is semisimple, the preradical \(\text{Rad} \) is also cohereditary.)

In [8] and [10], the authors give some conditions for a factor module of an \(H \)-supplemented module to be \(H \)-supplemented. Now we give analogous of their conditions for a \(\tau \)-\(H \)-supplemented module.
Theorem 1. Let \(\tau \) be a cohereditary preradical. Let \(M \) be a \(\tau \)-H-supplemented module and \(X \leq M \). If for every direct summand \(K \) of \(M \), \((X+K)/X \) is a direct summand of \(M/X \), then \(M/X \) is \(\tau \)-H-supplemented.

Proof. Let \(N/X \leq M/X \). Since \(M \) is \(\tau \)-H-supplemented, there exists a direct summand \(D \) of \(M \) such that \((N+D)/N \subseteq \tau(M/N) \) and \((N+D)/D \subseteq \tau(M/D) \). By assumption, \((D+X)/X \) is a direct summand of \(M/X \). Since \(\tau \) is a cohereditary preradical, it is easy to check that
\[
\frac{N/X+(D+X)/X}{N/X} \subseteq \tau\left(\frac{M/X}{N/X}\right) \quad \text{and} \quad \frac{N/X+(D+X)/X}{(D+X)/X} \subseteq \tau\left(\frac{M/X}{(D+X)/X}\right).
\]
Hence \(M/X \) is \(\tau \)-H-supplemented.

Let \(M \) be a module. Then \(M \) is called distributive if its lattice of submodules is a distributive lattice, equivalently for submodules \(K, L, N \) of \(M \), \(N+(K \cap L) = (N+K) \cap (N+L) \) or \(N \cap (K+L) = (N \cap K) + (N \cap L) \).

Corollary 1. Let \(M \) be a \(\tau \)-H-supplemented module for a cohereditary preradical \(\tau \).

1. If \(M \) is a distributive module, then \(M/X \) is \(\tau \)-H-supplemented for every submodule \(X \) of \(M \).
2. Let \(N \leq M \) such that for each decomposition \(M = M_1 \oplus M_2 \) we have \(N = (N \cap M_1) \oplus (N \cap M_2) \). Then \(M/N \) is \(\tau \)-H-supplemented.
3. Let \(X \) be a projection invariant submodule of \(M \). Then \(M/X \) is \(\tau \)-H-supplemented. In particular, for every fully invariant submodule \(A \) of \(M \), \(M/A \) is \(\tau \)-H-supplemented.

Proof. (1) Let \(D \) be a direct summand of \(M \). Then \(M = D \oplus D' \) for some submodule \(D' \) of \(M \). Now \(M/X = [(D+X)/X] + [(D'+X)/X] \) and \(X = X+(D \cap D') = (X+D) \cap (X+D') \). So \(M/X = [(D+X)/X] \oplus [(D'+X)/X] \). By Theorem 1, \(M/X \) is \(\tau \)-H-supplemented.

(2) Let \(L/N \leq M/N \). Since \(M \) is \(\tau \)-H-supplemented, there exists a direct summand \(D \) of \(M \) and a submodule \(X \) of \(M \) such that \(X/L \subseteq \tau(M/L) \) and \(X/D \subseteq \tau(M/D) \). Let \(M = D \oplus D' \). Then by hypothesis, \(N = (D \cap N) \oplus (D' \cap N) = (D+N) \cap (D'+N) \). So, \((D+N)/N \oplus (D'+N)/N = M/N \). Now we have \(X/N \mid L/N \) and \(X/N \mid (D+N)/N \) and hence \(M/N \) is \(\tau \)-H-supplemented by Proposition 1.

(3) Clear by (2).

Proposition 2. Let \(M \) be a \(\tau \)-H-supplemented module for a cohereditary preradical \(\tau \) and \(N \leq M \). If for each idempotent \(e : M \to M \) there exists an idempotent \(f : M/N \to M/N \) such that \(\frac{(N+e(M))/N}{T/N} \subseteq \tau\left(\frac{M/N}{T/N}\right) \) where \(Imf = T/N \), then \(M/N \) is \(\tau \)-H-supplemented.

Proof. Let \(Y/N \leq M/N \). Since \(M \) is \(\tau \)-H-supplemented, there exists an idempotent \(e : M \to M \) and a submodule \(X \) of \(M \) such that \(X/e(M) \subseteq \)
$\tau(M/e(M))$ and $X/Y \subseteq \tau(M/Y)$ by Proposition 1. By hypothesis, there exists an idempotent $f : M/N \to M/N$ with $\text{Im} f = T/N$ such that $(N + e(M))/T \subseteq \tau(M/T)$. Now, T/N is a direct summand of M/N and $T/N \subseteq X/N$. Clearly $X/N \subseteq \tau(M/N)$ and $X/N \subseteq \tau(M/N)$.

Proposition 3. Let τ be a cohereditary preradical and M_0 a direct summand of a module M such that for every decomposition $M = N \oplus K$ of M, there exist submodules N' of N and K' of K such that $M = M_0 \oplus N' \oplus K'$ with $\tau(K') = K'$. If M is τ-H-supplemented, then M/M_0 is τ-H-supplemented.

Proof. Let $N/M_0 \leq M/M_0$. Since M is τ-H-supplemented, there exists a decomposition $M = K \oplus S$ such that $(N + K)/N \subseteq \tau(M/N)$ and $(N + K)/K \subseteq \tau(M/K)$. By hypothesis, $M = M_0 \oplus N' \oplus K'$ for $N' \leq K$ and $K' \leq S$ with $\tau(K') = K'$. Now it is easy to see that $(M_0 \oplus N')/M_0$ is a τ-H-supplement of N/M_0 in M/M_0. \square

Let M be an R-module and τ a preradical. By $P_\tau(M)$ we denote the sum of all submodules N of M with $\tau(N) = N$. The following Lemma will be very useful for us to prove Corollary 2.

Lemma 1. Let τ be any preradical and let M be any module. Then

(1) $\tau(P_\tau(M)) = P_\tau(M)$.
(2) $P_\tau(M)$ is a fully invariant submodule of M.
(3) If $M = N \oplus K$, then $P_\tau(M) = P_\tau(N) \oplus P_\tau(K)$.

Corollary 2. Let M be a τ-H-supplemented module for a cohereditary preradical τ. If $P_\tau(M)$ is a direct summand of M, then $P_\tau(M)$ and $M/P_\tau(M)$ are τ-H-supplemented.

Proof. By Corollary 1(3) and Lemma 1(2), $M/P_\tau(M)$ is τ-H-supplemented. Let L be a submodule of M such that $M = P_\tau(M) \oplus L$. Let $M = N \oplus K$. Now, by Lemma 1(3), $M = P_\tau(N) \oplus P_\tau(K) \oplus L$. Therefore $M/L \cong P_\tau(M)$ is τ-H-supplemented by Proposition 3 and Lemma 1(1). \square

2. Direct summands of τ-H-supplemented modules

In this section we will consider direct summands of τ-H-supplemented modules. We investigate some conditions for direct summands of a τ-H-supplemented module to be τ-H-supplemented. We call a module M completely τ-H-supplemented provided every direct summand of M is τ-H-supplemented. The following Theorem is an analogue of [10, Theorem 2.7].
Theorem 2. (1) Every τ-lifting module is completely τ-H-supplemented.

(2) Let M be a τ-H-supplemented module for a cohereditary preradical τ. If M has the SSP, then M is completely τ-H-supplemented.

Proof. (1) It is clear since by [2, 2.10] every direct summand of a τ-lifting module is again τ-lifting.

(2) Assume that M is τ-H-supplemented and M has the SSP. Let N be a direct summand of M. We will show that N is τ-H-supplemented. Let $M = N \oplus N'$ for some submodule N' of M. Suppose that A is a direct summand of M. Since M has the SSP, $A + N'$ is a direct summand of M. Let $M = (A + N') \oplus B$ for some $B \leq M$. Then $M/N' = (A + N')/N' \oplus (B + N')/N'$. Hence by Theorem 1, M/N' is τ-H-supplemented and so N is τ-H-supplemented.

Proposition 4. Let M be a duo module. Then M has the SSP.

Proof. See [10, Page 969].

Corollary 3. Let τ be a cohereditary preradical. Let M be a τ-H-supplemented duo module. Then M is completely τ-H-supplemented.

The following is an example for Theorem 2(2) in case $\tau = \text{Rad}$.

Example 2. Let F be a field and R the upper triangular matrix ring $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$. Since $R/JacR$ is semisimple, the preradical Rad is cohereditary. For submodules $A = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ and $B = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$, let $M = A \oplus (R/B)$. Then M is H-supplemented by [6, Lemma 3]. Also M has the SSP. Therefore M is a completely τ-H-supplemented module by Theorem 2(2).

3. Direct sums of τ-H-supplemented modules

The following example shows that any (finite) direct sum of τ-H-supplemented modules need not be τ-H-supplemented for $\tau = \text{Rad}$. We will show that under some conditions it will be true.

Example 3. Let R be a commutative local ring and M a finitely generated R-module. Assume $M \cong \bigoplus_{i=1}^{n} R/I_i$. Since every I_i is fully invariant in R, every R/I_i is τ-H-supplemented by Corollary 1(3). By [11, Lemma A.4], M is τ-H-supplemented if $I_1 \leq I_2 \leq \ldots \leq I_n$. If we don’t have the condition $I_1 \leq I_2 \leq \ldots \leq I_n$, M is not τ-H-supplemented. (Note that since M is finitely generated, M is H-supplemented if and only if it is τ-H-supplemented.)
We call a module M τ-semilocal provided that $M/\tau(M)$ is semisimple. Clearly τ-supplemented modules are τ-semilocal.

Lemma 2. Let M be a τ-H-supplemented module for a cohereditary preradical τ. Then M is τ-semilocal.

Proof. Let $N/\tau(M) \leq M/\tau(M)$. Since M is τ-H-supplemented, there exists a direct summand D of M such that $(N + D)/N \subseteq \tau(M/N)$ and $(N + D)/D \subseteq \tau(M/D)$. Since $D \leq_d M$, $M = D \oplus D'$ for some submodule D' of M. Then $M = D' + N$. It follows that $M/\tau(M) = N/\tau(M) + (D' + \tau(M))/\tau(M)$. Since $N \cap D' \subseteq \tau(D')$, $M/\tau(M) = N/\tau(M) \oplus (D' + \tau(M))/\tau(M)$. Hence $M/\tau(M)$ is semisimple.

Proposition 5. Let M be a module. Then the following are equivalent for a cohereditary preradical τ:

1. M is τ-H-supplemented;
2. M is τ-semilocal and each submodule (direct summand) of $M/\tau(M)$ lifts to a direct summand of M.

Proof. (1) ⇒ (2) By Lemma 2, we only prove the last statement. Let $N/\tau(M) \leq M/\tau(M)$. Since M is τ-H-supplemented, there exists $D \leq_d M$ such that $(N + D)/N \subseteq \tau(M/N)$ and $(N + D)/D \subseteq \tau(M/D)$. Then $D \subseteq N$. Hence $N/\tau(M) = (D + \tau(M))/\tau(M)$. This means $N/\tau(M)$ lifts to D.

(2) ⇒ (1) Let $N \leq M$. Then by assumption, $(N + \tau(M))/\tau(M) = \overline{N}$ is a direct summand of $M/\tau(M) = \overline{M}$. Then by assumption $\overline{N} = \overline{L}$ such that $M = L \oplus K$. The rest is easy by taking L as a τ-H-supplement of N in M.

Theorem 3. Let τ be a cohereditary preradical. Let $M = \bigoplus_{i \in I} H_i$ be a direct sum of τ-H-supplemented modules H_i ($i \in I$). Assume that each direct summand of $M/\tau(M)$ lifts to a direct summand of M. Then M is τ-H-supplemented.

Proof. Clearly $M/\tau(M)$ is semisimple by Lemma 2. Now M is τ-H-supplemented by Proposition 5.

Theorem 4. Let τ be a cohereditary preradical. Let $M = M_1 \oplus M_2$ be a duo module. Then M is τ-H-supplemented if and only if M_1 and M_2 are τ-H-supplemented.

Proof. Note that for $A \leq M$, we can write $A = (A \cap M_1) \oplus (A \cap M_2)$. ($\Rightarrow$) Assume that M is τ-H-supplemented. Since M_1 and M_2 are fully invariant submodules of M, M_1 and M_2 are τ-H-supplemented by Corollary 1(3).
Suppose that \(M_1 \) and \(M_2 \) are \(\tau\)-\(H \)-supplemented. Let \(A \leq M \). Then
\[
A = (A \cap M_1) \oplus (A \cap M_2).
\]
By assumption, there exist direct summands \(D_1 \) of \(M_1 \) and \(D_2 \) of \(M_2 \) such that
\[
((A \cap M_1) + D_1)/(A \cap M_1) \subseteq \tau(M_1/(A \cap M_1)),
\]
\[
((A \cap M_1) + D_1)/D_1 \subseteq \tau(M_1/D_1)
\]
and
\[
((A \cap M_2) + D_2)/(A \cap M_2) \subseteq \tau(M_2/(A \cap M_2)),
\]
\[
((A \cap M_2) + D_2)/D_2 \subseteq \tau(M_2/D_2).
\]
It is not hard to see that
\[
(A + (D_1 + D_2))/A \subseteq \tau(M/A)
\]
and
\[
(A + (D_1 + D_2))/(D_1 + D_2) \subseteq \tau(M/(D_1 + D_2)).
\]
Namely, \(D_1 \oplus D_2 \) is a \(\tau\)-\(H \)-supplement of \(A \) in \(M \). Hence \(M \) is \(\tau\)-\(H \)-supplemented.

Definition 2. Let \(M \) and \(N \) be two modules. Let \(\tau \) be a preradical. Then \(N \) is called \(\tau\)-\(M \)-projective if, for any \(K \leq M \) and any homomorphism
\[
f : N \longrightarrow M/K
\]
there exists a homomorphism \(h : N \longrightarrow M \) such that
\[
\text{Im}(f - \pi h) \subseteq \tau(M/K),
\]
where \(\pi : M \longrightarrow M/K \) is the natural epimorphism.

Lemma 3. Let \(M = M_1 \oplus M_2 \). Consider the following conditions:

1. \(M_1 \) is \(\tau\)-\(M_2 \)-projective;

2. For every \(K \leq M \) with \(K + M_2 = M \), there exists \(M_3 \leq M \) such that
\[
M = M_2 \oplus M_3
\]
and \((K + M_3)/K \subseteq \tau(M/K) \).

Then (1) \(\Rightarrow \) (2).

Proof. Let \(K \leq M \) and \(M = K + M_2 \). Consider the epimorphism \(\pi : M_2 \longrightarrow M/K \) with \(m_2 \mapsto m_2 + K(m_2 \in M_2) \) and the homomorphism
\[
h : M_1 \longrightarrow M/K \text{ with } m_1 \mapsto m_1 + K(m_1 \in M_1).
\]
Since \(M_1 \) is \(\tau\)-\(M_2 \)-projective, there exist a homomorphism \(\overline{h} : M_1 \longrightarrow M_2 \) and a submodule \(X \) of \(M \) with \(K \subseteq X \) such that
\[
\text{Im}(h - \pi \overline{h}) = X/K \subseteq \tau(M/K).
\]
Let \(M_3 = \{a - \overline{h}(a) \mid a \in M_1\} \). Clearly \(M = M_2 \oplus M_3 \). Since \(K + M_3 \subseteq X \),
\[
(K + M_3)/K \subseteq X/K.
\]
Hence \((K + M_3)/K \subseteq \tau(M/K) \).

Lemma 4. Let \(A \) and \(\{M_i\}_{i=1}^n \) be modules. If each \(M_i \) is \(\tau\)-\(A \)-projective,
for \(i = 1, 2, \ldots n \), then \(\bigoplus_{i=1}^n M_i \) is \(\tau\)-\(A \)-projective.

Proof. The proof is straightforward.

Theorem 5. Let \(\tau \) be a cohereditary preradical. Let \(M = M_1 \oplus M_2 \)
be a \(\tau\)-supplemented module. Assume \(M_1 \) is \(\tau\)-\(M_2 \)-projective (or \(M_2 \) is \(\tau\)-\(M_1 \)-projective). If \(M_1 \) and \(M_2 \) are \(\tau\)-\(H \)-supplemented, then \(M \) is \(\tau\)-\(H \)-supplemented.

Proof. Let \(Y \leq M \).

Case 1: Let \(M = Y + M_2 \). Then by Lemma 3, there exists \(M_3 \leq M \) such that
\[
M = M_3 \oplus M_2 \text{ and } (Y + M_3)/Y \subseteq \tau(M/Y),
\]
Since \(M/M_3 \) is \(\tau\)-\(H \)-supplemented, there exist \(X/M_3 \leq M/M_3 \) and a direct summand \(D/M_3 \).
of \(M/M_3 \) such that \(\frac{X/M_3}{Y + M_3/M_3} \subseteq \tau(\frac{M/M_3}{Y + M_3/M_3}) \) and \(\frac{X/M_3}{D/M_3} \subseteq \tau(\frac{M/M_3}{D/M_3}) \) by Proposition 1. Clearly, \(D \) is a direct summand of \(M \). It is easy to check that \(X/D \subseteq \tau(M/D) \) and \(X/Y \subseteq \tau(M/Y) \). Therefore \(M \) is \(\tau-H \)-supplemented by Proposition 1.

Case 2: Let \(Y + M_2 \neq M \). Since \(M \) is \(\tau \)-supplemented, \(M/\tau(M) \) is semisimple. Then there exists a submodule \(K \) of \(M \) containing \(\tau(M) \) such that \(M/\tau(M) = K/\tau(M) \oplus (Y + M_2 + \tau(M))/\tau(M) \). So \(M = (K + Y) + M_2 \) and \(\tau(M) = K \cap (Y + M_2 + \tau(M)) = \tau(M) + (K \cap (Y + M_2)) \) and hence \(K \cap (Y + M_2) \subseteq \tau(M) \). By Lemma 3, there exists \(M_4 \leq M \) such that \(M = M_2 \oplus M_4 \) and \((K + Y + M_4)/(K + Y) \subseteq \tau(M/(K + Y)) \). This implies that \(K + Y + M_4 \subseteq \tau(M) + K + Y = K + Y \). Now \(M/M_2 \) and \(M/M_4 \) are \(\tau-H \)-supplemented. Therefore there exist submodules \(X_1/M_2 \) of \(M/M_2 \) and \(X_2/M_4 \) of \(M/M_4 \) and direct summands \(D_1/M_2 \) of \(M/M_2 \) and \(D_2/M_4 \) of \(M/M_4 \) such that \(\frac{X_1/M_2}{Y + M_2/M_2} \subseteq \tau(\frac{M/M_2}{Y + M_2/M_2}) \), \(\frac{X_2/M_4}{D_1/M_2} \subseteq \tau(\frac{M/M_4}{D_1/M_2}) \), \(\frac{X_2/M_4}{Y + K + M_4/M_4} \subseteq \tau(\frac{M/M_4}{Y + K + M_4/M_4}) \) and \(\frac{X_2/M_4}{D_2/M_4} \subseteq \tau(\frac{M/M_4}{D_2/M_4}) \). Clearly, \(D_1 \cap D_2 \) is a direct summand of \(M \). Let \(M = (D_1 \cap D_2) \oplus L \) for some submodule \(L \) of \(M \). Then by [7, Lemma 1.2], \(M = D_2 \oplus (D_1 \cap L) \). Note that we have that \(X_1 \subseteq \tau(M) + D_1 \), \(X_1 \subseteq \tau(M) + M_2 + Y \), \(X_2 \subseteq \tau(M) + D_2 \) and \(X_2 \subseteq \tau(M) + Y + K + M_4 = K + Y \). Now,

\[
X_1 \cap X_2 \subseteq (\tau(M) + M_2 + Y) \cap (Y + K) = (\tau(M) + Y) + (M_2 \cap (Y + K)) \subseteq \tau(M) + Y + [K \cap (Y + M_2)] + [Y \cap (K + M_2)] = \tau(M) + Y
\]

and

\[
X_1 \cap X_2 \subseteq (\tau(M) + D_1) \cap (\tau(M) + D_2) = (\tau(D_2) + D_1) \cap (\tau(D_1 \cap L) + D_2) = \tau(D_2) + [(D_2 + \tau(D_1 \cap L)) \cap D_1] = \tau(D_2) + \tau(D_1 \cap L) + (D_1 \cap D_2) \subseteq \tau(M) + (D_1 \cap D_2).
\]

Therefore \((X_1 \cap X_2)/Y \subseteq \tau(M/Y) \) and \((X_1 \cap X_2)/(D_1 \cap D_2) \subseteq \tau(M/(D_1 \cap D_2)) \). Thus \(M \) is \(\tau-H \)-supplemented by Proposition 1.

Corollary 4. Let \(\tau \) be a cohereditary preradical. Let \(M = \oplus_{i=1}^n M_i \) be a \(\tau \)-supplemented module. Assume that \(M_i \) is \(\tau-M_j \)-projective for all \(j > i \). If each \(M_i \) is \(\tau-H \)-supplemented, then \(M \) is \(\tau-H \)-supplemented.

Proof. By Lemma 4 and Theorem 5.

\[\square \]

4. Relations between τ-H-supplemented modules and the others

A module M is called τ-\oplus-supplemented if for every $A \leq M$, there exists a $B \leq_d M$ such that $A + B = M$ and $A \cap B \subseteq \tau(B)$. Clearly every τ-lifting module is τ-\oplus-supplemented and every τ-\oplus-supplemented module is τ-supplemented.

Next we will show that under some conditions every τ-\oplus-supplemented module is τ-H-supplemented.

Proposition 6. Let τ be any preradical. Assume M is τ-\oplus-supplemented such that whenever $M = M_1 \oplus M_2$ then M_1 and M_2 are relatively projective. Then M is τ-H-supplemented.

Proof. Let $N \leq M$. Since M is τ-\oplus-supplemented, there exists a decomposition $M = M_1 \oplus M_2$ such that $M = N + M_2$ and $N \cap M_2 \subseteq \tau(M_2)$ for submodules M_1, M_2 of M. By hypothesis, M_1 is M_2-projective. By [11, Lemma 4.47], we obtain $M = A \oplus M_2$ for some submodule A of M such that $A \leq N$. Then $N = A \oplus (M_2 \cap N)$. It is easy to see that $(N + A)/A \subseteq \tau(M/A)$ and $(N + A)/N \subseteq \tau(M/N)$. Thus M is τ-H-supplemented.

Corollary 5. Let τ be any preradical. Let M be a τ-\oplus-supplemented module. If M is projective, then M is τ-H-supplemented.

Let $e = e^2 \in R$. Then e is called a left (right) semicentral idempotent if $xe = exe$ ($ex = exe$), for all $x \in R$. The set of all left (right) semicentral idempotents is denoted by $S_l(R)$ ($S_r(R)$). A ring R is called Abelian if every idempotent is central.

Proposition 7. Let τ be a preradical and M an R-module such that $\text{End}(M)$ is Abelian and $X \leq M$ implies $X = \sum_{i \in I} h_i(M)$ where $h_i \in \text{End}(M)$. If M is τ-\oplus-supplemented, then M is τ-H-supplemented and satisfies the (D_3)-condition.

Proof. Let $X \leq M$, $X = \sum_{i \in I} h_i(M)$ with $h_i \in \text{End}(M)$. Since M is τ-\oplus-supplemented, there exists a direct summand eM such that $X + eM = M$ and $(X \cap eM) \subseteq \tau(eM)$ for some $e^2 = e \in \text{End}(M)$. Since $\text{End}(M)$ is Abelian, $(1-e)X = (1-e)M = (1-e)\sum_{i \in I} h_i(M) = \sum_{i \in I} h_i(1-e)(M) \subseteq X$. Therefore $X = (1-e)M \oplus (X \cap eM)$. Then $(1-e)M$ is a τ-H-supplement of X. If $eM + fM = M$ for $e^2 = e$, $f^2 = f \in \text{End}(M)$, then $eM \cap fM = efM$ with $(ef)^2 = ef$. So M satisfies the (D_3)-condition.

Recall that for a commutative ring R, an R-module M is said to be a multiplication module if for each $X \leq M$, $X = MA$ for some ideal A of R.

H-supplemented modules
Corollary 6. Let τ be a preradical and M a $\tau$$\oplus$-supplemented module. If M satisfies one of the following conditions, then M is τ-H-supplemented.

(1) M is a multiplication module and R is commutative.
(2) M is cyclic and R is commutative.

Proof. (1) Assume M is a multiplication module. Let $X \leq M$. Then $X = MA$ for some ideal A of R. For each $a \in A$, define $h_a : M \to M$ by $h_a(m) = ma$ for all $m \in M$. Then h_a is an R-homomorphism and $X = MA = \sum_{a \in A} h_a(M)$. Since every multiplication module is a duo module, thus if $e^2 = e \in S = \text{End}(M)$, then $e, 1-e \in S_1(S)$. Therefore e is central. So $\text{End}(M)$ is Abelian. By Proposition 7, M is τ-H-supplemented.

(2) Clear by (1) since every cyclic module over a commutative ring is a multiplication module.

Now we investigate the relations between τ-H-supplemented modules and the others. A module M is called amply τ-supplemented if for any submodules K and V of M such that $M = K + V$, there is a submodule U of V such that $K + U = M$ and $K \cap U \subseteq \tau(U)$.

Lemma 5. Let τ be any preradical and let M be a projective module. The following are equivalent:

(1) M is τ-supplemented;
(2) M is amply τ-supplemented.

Proof. Clearly an amply τ-supplemented module is τ-supplemented. For the converse: Let $M = U + V$ be a τ-supplement of U in M. For an $f \in \text{End}(M)$ with $\text{Im}(f) \subseteq V$ and $\text{Im}(I - f) \subseteq U$ we have $f(U) \subseteq U$, $M = U + f(X)$ and $f(U \cap X) = U \cap f(X)$ (from $u = f(x)$ we derive $x - u = (I - f)(x) \in U$ and $x \in U$). Since $U \cap X \subseteq \tau(X)$, we also have $U \cap f(X) \subseteq \tau(f(X))$, i.e. $f(X)$ is a τ-supplement of U with $f(X) \subseteq V$. Hence M is amply τ-supplemented.

Let M be any module. A submodule U of M is called quasi strongly lifting (QSL) in M if whenever $(A + U)/U$ is a direct summand of M/U, there exists a direct summand P of M such that $P \leq A$ and $P + U = A + U$ (see [1]).

Lemma 6. Let τ be a cohereditary preradical and let M be any module. The following are equivalent:

(1) M is τ-lifting;
(2) M is τ-H-supplemented and $\tau(M)$ is QSL in M.

Proof. By Lemma 2 and [1, Lemma 3.5 and Proposition 3.6].
Lemma 7. Let τ be any preradical and let M be a projective module such that every τ-supplement submodule of M is a direct summand of M. The following are equivalent:
(1) M is τ-supplemented;
(2) M is amply τ-supplemented;
(3) M is τ-lifting;
(4) M is τ-\oplus-supplemented.

Proof. (1) \Leftrightarrow (2) By Lemma 5.
(1) \Rightarrow (3) By [1, Lemma 3.2].
(3) \Rightarrow (1) and (1) \Leftrightarrow (4) are clear by definitions and the assumption that every τ-supplement submodule of M is a direct summand of M. \hfill \Box

Now we have the following Theorem:

Theorem 6. Let τ be a cohereditary preradical. Let M be a projective module such that every τ-supplement submodule of M is a direct summand. The following are equivalent:
(1) M is τ-supplemented;
(2) M is τ-lifting;
(3) M is amply τ-supplemented;
(4) M is τ-H-supplemented and $\tau(M)$ is QSL in M;
(5) M is τ-\oplus-supplemented.

As we see in Example 3 a finite direct sum of τ-H-supplemented modules need not be τ-H-supplemented. We will show that a finite direct sum of τ-\oplus-supplemented modules is τ-\oplus-supplemented.

Lemma 8. Let $N, L \leq M$ such that $N + L$ has a τ-supplement H in M and $N \cap (H + L)$ has a τ-supplement G in N. Then $H + G$ is a τ-supplement of L in M.

Proof. Let H be a τ-supplement of $N + L$ in M and G be a τ-supplement of $N \cap (H + L)$ in N. Then $M = (N + L) + H$ such that $(N + L) \cap H \subseteq \tau(H)$ and $N = [N \cap (H + L)] + G$ such that $(H + L) \cap G \subseteq \tau(G)$. Since $(H + G) \cap L \subseteq [(G + L) \cap H] + [(H + L) \cap G] \subseteq \tau(H) + \tau(G) \subseteq \tau(H + G)$, $H + G$ is a τ-supplement of L in M. \hfill \Box

Theorem 7. For a ring R, any finite direct sum of τ-\oplus-supplemented R-modules is τ-\oplus-supplemented.

Proof. Let $M = M_1 \oplus \ldots \oplus M_n$ and M_i be a τ-\oplus-supplemented module for each $1 \leq i \leq n$. To prove that M is τ-\oplus-supplemented it is sufficient to assume $n = 2$.

Let $L \leq M$. Then $M = M_1 + M_2 + L$ so that $M_1 + M_2 + L$ has a τ-supplement 0 in M. Let H be a τ-supplement of $M_2 \cap (M_1 + L)$ in M_2 such that $H \leq_d M_2$. By Lemma 8, H is a τ-supplement of $M_1 + L$ in M. Let K be a τ-supplement of $M_1 \cap (L + H)$ in M_1 such that $K \leq_d M_1$. Again by applying Lemma 8, we get that $H + K$ is a τ-supplement of L in M. Since $H \leq_d M_2$ and $K \leq_d M_1$, it follows that $H + K = H \oplus K \leq_d M$. Thus $M = M_1 \oplus M_2$ is τ-supplemented.

Note that by the same proof as the proof of Theorem 7, any finite sum of τ-supplemented modules is τ-supplemented.

Theorem 8. Let τ be a cohereditary preradical. Let R be a τ-supplemented ring (i.e. R_R is τ-supplemented) such that every finite direct sum of the copies of R is distributive. Then the following are equivalent:

1. R is τ-H-supplemented;
2. Every finitely generated free R-module is τ-H-supplemented;
3. Every finitely generated projective R-module is τ-H-supplemented;
4. If F is a finitely generated free R-module and N a fully invariant submodule, then F/N is τ-H-supplemented.

Proof. (1) \Rightarrow (3) Let M be a finitely generated projective R-module. Then M is isomorphic to a direct summand of a finitely generated free module F. By Corollary 4, F is τ-H-supplemented. Thus M is τ-H-supplemented by Corollary 1(1).

(3) \Rightarrow (2) \Rightarrow (1) and (4) \Rightarrow (1) are clear.

(2) \Rightarrow (4) By (2), F is τ-H-supplemented. The result follows from Corollary 1(3). □

We next consider the preradical \overline{Z}.

Let M be a module and \mathcal{S} denote the class of all small modules. Talebi and Vanaja defined $\overline{Z}(M)$ in [13] as follows:

$\overline{Z}(M) = \bigcap \{\ker g \mid g \in \text{Hom}(M, L), L \in \mathcal{S}\}$. The module M is called cosingular (non-cosingular) if $\overline{Z}(M) = 0$ ($\overline{Z}(M) = M$). Clearly every non-cosingular module is \overline{Z}-H-supplemented. Also if R is a non-cosingular ring, then every R-module is \overline{Z}-H-supplemented by [13, Proposition 2.5 and Corollary 2.6].

Let M be a module and τ_M a preradical on $\sigma[M]$. In [12], the authors call a module $N \in \sigma[M]$ τ_M-semiperfect if it satisfies one of the following conditions (see [12, Proposition 2.1 and Definition 2.2]):

1. For every submodule K of N there exists a decomposition $K = A \oplus B$ such that A is a projective direct summand of N in $\sigma[M]$ and $B \subseteq \tau_M(N)$;
(2) For every submodule K of N, there exists a decomposition $N = A \oplus B$ such that A is projective in $\sigma[M]$, $A \leq K$ and $K \cap B \subseteq \tau_M(N)$.

If $\sigma[M] = \text{Mod} - R$, then they call N τ-semiperfect.

By the above definition, every τ-semiperfect module is τ-lifting and hence τ-H-supplemented. Also if M is projective we have the following:

τ-semiperfect \iff τ-lifting \iff τ-\oplus-supplemented \Rightarrow τ-H-supplemented

In [12, Theorem 2.23], the authors showed that their τ-semiperfect module definition agrees with the definition of τ-semiperfect module in the sense of [2] for a projective module and for the preradical Soc. In [14], Tribak and Keskin Tütüncü studied \mathbb{Z}-lifting modules and \mathbb{Z}-semiperfect modules in the sense of [12]. They also investigate some conditions for the preradical \mathbb{Z} for two definitions of τ-semiperfect modules to be agreed (see [14, Proposition 5.8 and Proposition 5.11]).

A τ-H-supplemented module need not be H-supplemented. Of course if $\tau(M) \ll M$ and τ is cohereditary, then every τ-H-supplemented module is H-supplemented.

\textbf{Example 4.} Let K be a field and let $R = \prod_{n \geq 1} K_n$ with $K_n = K$. By [14, Example 4.1(1)] R is not semiperfect. Since R is projective, R is not \oplus-supplemented by [5, Lemma 1.2]. Hence R is not H-supplemented. Again by [14, Example 4.1(1)], the module R is \mathbb{Z}-semiperfect in the sense of [12] and so it is \mathbb{Z}-H-supplemented.

If R is a DVR (Discrete Valuation Ring), then the R-module R is semiperfect and hence H-supplemented.

Now we give an equivalent condition for a module to be \mathbb{Z}-\oplus-supplemented module under some assumptions.

\textbf{Proposition 8.} Let R be a commutative ring, P a projective module with $\text{Rad}(P) \ll P$ and assume P to have finite hollow dimension. Then the following are equivalent:

1. P is \mathbb{Z}-\oplus-supplemented;
2. $P = P_1 \oplus P_2 \oplus P_3$ with P_1 \oplus-supplemented and $\text{Rad}(P_1) = \mathbb{Z}(P_1)$, P_2 semisimple and $\mathbb{Z}(P_3) = P_3$.

\textbf{Proof.} (1) \Rightarrow (2) See the proof of [14, Corollary 4.3] and [5, Lemma 2.1].

(2) \Rightarrow (1) By [14, Corollary 4.3] all P_1, P_2 and P_3 are \mathbb{Z}-semiperfect in the sense of [12] and hence \mathbb{Z}-\oplus-supplemented. By Theorem 7, P is \mathbb{Z}-\oplus-supplemented. \square

\textbf{References}

131

Contact information

Yahya Talebi, Department of Mathematics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
Ali Reza Moniri Hamzekolaei E-Mail: talebi@umz.ac.ir, a.monirih@umz.ac.ir

Derya Keskin Tütüncü Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
E-Mail: keskin@hacettepe.edu.tr

Received by the editors: 14.11.2009
and in final form 01.10.2011.