RESEARCH ARTICLE

Algebra and Discrete Mathematics Volume 12 (2011). Number 1. pp. 116 – 131 © Journal "Algebra and Discrete Mathematics"

H-supplemented modules with respect to a preradical

Yahya Talebi, A. R. Moniri Hamzekolaei and Derya Keskin Tütüncü

Communicated by R. Wisbauer

ABSTRACT. Let M be a right R-module and τ a preradical. We call $M \tau$ -H-supplemented if for every submodule A of M there exists a direct summand D of M such that $(A+D)/D \subseteq \tau(M/D)$ and $(A+D)/A \subseteq \tau(M/A)$. Let τ be a cohereditary preradical. Firstly, for a duo module $M = M_1 \oplus M_2$ we prove that M is τ -H-supplemented if and only if M_1 and M_2 are τ -H-supplemented. Secondly, let $M = \bigoplus_{i=1}^n M_i$ be a τ -supplemented module. Assume that M_i is τ - M_j -projective for all j > i. If each M_i is τ -H-supplemented, then M is τ -H-supplemented. We also investigate the relations between τ -H-supplemented modules and τ - $(\oplus$ -)supplemented modules.

Introduction

Throughout this paper, R denotes an associative ring with identity and modules are unital right R-modules. We use $N \leq M$ and $N \leq_d M$ to signify that N is a submodule and a direct summand of M, respectively.

A functor τ from the category of the right *R*-modules Mod – R to itself is called a *preradical* if it satisfies the following properties:

i) For any *R*-module M, $\tau(M)$ is a submodule of an *R*-module M,

ii) If $f: M' \to M$ is an *R*-module homomorphism, then $f(\tau(M')) \subseteq \tau(M)$ and $\tau(f)$ is the restriction of f to $\tau(M')$.

The authors would like to thank Prof. R. Wisbauer and the referee for their helpful comments and carefully reading this article.

²⁰⁰⁰ Mathematics Subject Classification: 16S90, 16D10, 16D70, 16D99.

Key words and phrases: *H*-supplemented module, τ -*H*-supplemented module, τ -lifting module.

It is well known if K is a direct summand of M, then $\tau(K) = \tau(M) \cap K$ for a preradical τ . A preradical τ is said to be *cohereditary* if, for every $M \in \text{Mod} - \mathbb{R}$ and every submodule N of M, $\tau(M/N) = (\tau(M) + N)/N$. We refer to [3] for details concerning radicals and preradicals. In this paper, τ will be a preradical unless otherwise stated. Recall that a module M has the Summand Sum Property, (SSP) if the sum of any two direct summands of M is again a direct summand (see [4]).

Let M be a module. A submodule X of M is called *fully invariant*, if for every $f \in End(M)$, $f(X) \subseteq X$. The module M is called a *duo module*, if every submodule of M is fully invariant. The submodule A of M is called *projection invariant* in M if $f(A) \subseteq A$, for any idempotent $f \in End(M)$. A submodule K of M is called *small* in M (denoted by $K \ll M$) if $N + K \neq M$ for any proper submodule N of M.

Lifting modules were defined and studied by many authors. *H*-supplemented modules were introduced in [11] as a generalization of lifting modules. According to [11], a module M is called *H*-supplemented if for every submodule A of M there exists a direct summand D of M such that A + X = M if and only if D + X = M for any submodule X of M. For more information about *H*-supplemented modules we refer the reader to [8], [10] and [11]. A module M is called \oplus -supplemented if for every submodule N of M there exists a direct summand D of M such that M = N + D and $N \cap D \ll D$. According to [15], a module M is semiperfect if every factor module of M has a projective cover. By [15, 41.14 and 42.1], if P is projective, then P is semiperfect if and only if for every submodule K of P there exists a decomposition $K = A \oplus B$ such that A is a direct summand of P and $B \ll P$. By [5, Lemma 1.2] a projective module is \oplus -supplemented if and only if it is semiperfect.

In [2], for a radical τ , Al-Takhman, Lomp and Wisbauer defined and studied the concept of τ -lifting, τ -supplemented and τ -semiperfect modules. Following [2], a module M is called τ -lifting if every submodule N of Mhas a decomposition $N = A \oplus B$ such that A is a direct summand of Mand $B \subseteq \tau(M)$ and they call $M \tau$ -supplemented if for every submodule N of M there exists a submodule K of M such that N + K = M and $N \cap K \subseteq \tau(K)$ (In this case K is called a τ -supplement of N in M). They call a module $M \tau$ -semiperfect if for every submodule N of M, M/N has a projective τ -cover. In this paper we define τ -H-supplemented modules and investigate the general properties of such modules.

In Section 1 we will define τ -H-supplemented modules and give an equivalent condition for such modules. Also we obtain some conditions which under the factor module of a τ -H-supplemented module will be τ -H-supplemented. Let M be a τ -H-supplemented module for a cohereditary preradical τ . Then

(1) If M is a distributive module, then M/X is τ -H-supplemented for every submodule X of M.

(2) Let $N \leq M$ such that for each decomposition $M = M_1 \oplus M_2$ we have $N = (N \cap M_1) \oplus (N \cap M_2)$. Then M/N is τ -H-supplemented.

(3) Let X be a projection invariant submodule of M. Then M/X is τ -H-supplemented. In particular, for every fully invariant submodule A of M, M/A is τ -H-supplemented (Corollary 1).

In Section 2 we will study direct summands of τ -H-supplemented modules. We show that, if τ is a cohereditary preradical, every direct summand of a τ -H-supplemented module with SSP is τ -H-supplemented (Theorem 2).

In Section 3 we will study direct sums of τ -*H*-supplemented modules. Let τ be a cohereditary preradical. Let $M = M_1 \oplus M_2$ be a duo module. Then M is τ -*H*-supplemented if and only if M_1 and M_2 are τ -*H*-supplemented (Theorem 4). Let τ be a cohereditary preradical. Let $M = \bigoplus_{i=1}^{n} M_i$ be a τ -supplemented module. Assume that M_i is τ -*M*_jprojective for all j > i. If each M_i is τ -*H*-supplemented, then M is τ -*H*-supplemented (Corollary 4).

In Section 4 we will obtain the relations between τ -H-supplemented modules and the other modules. Let τ be a cohereditary preradical. Let M be a projective module such that every τ -supplement submodule of Mis a direct summand. The following are equivalent: (Theorem 6)

- (1) M is τ -supplemented;
- (2) M is τ -lifting;
- (3) M is amply τ -supplemented;
- (4) M is τ -H-supplemented and $\tau(M)$ is QSL in M;
- (5) M is τ - \oplus -supplemented.

1. Factor modules of τ -H-supplemented modules

In this section we will define τ -H-supplemented modules and give an equivalent condition for a module to be τ -H-supplemented. Also we investigate some conditions for factor modules of a τ -H-supplemented module to be τ -H-supplemented.

Keskin Tütüncü, Nematollahi and Talebi give equivalent conditions for a module to be *H*-supplemented (see [8, Theorem 2.1]). Now we give the definition of a τ -*H*-supplemented module based on their definition.

Definition 1. Let M be a module. Then M is τ -H-supplemented in case for every $A \leq M$ there exists a direct summand D of M such that $(A + D)/A \subseteq \tau(M/A)$ and $(A + D)/D \subseteq \tau(M/D)$.

In this paper, τ -H-supplement will mean that a direct summand D of M exists with the stated inclusions in Definition 1. The definition shows that every τ -lifting module is τ -H-supplemented.

Next we give an equivalent condition for a module to be τ -H-supplemented.

Proposition 1. Let M be a module. Then M is τ -H-supplemented if and only if for each $A \leq M$ there exists a direct summand D of M and a submodule X of M such that $A \subseteq X$, $D \subseteq X$, $X/A \subseteq \tau(M/A)$ and $X/D \subseteq \tau(M/D)$.

Proof. (\Rightarrow) It is clear.

 (\Leftarrow) Let $A \leq M$. By assumption, there exist a direct summand D of M and $X \leq M$ such that $(A + D)/A \subseteq X/A \subseteq \tau(M/A)$ and $(A + D)/D \subseteq X/D \subseteq \tau(M/D)$. Hence M is τ -H-supplemented. \Box

A factor module of a τ -H-supplemented module need not be τ -Hsupplemented in general. Before giving a counter example to the fact that a factor module of a τ -H-supplemented module need not be τ -H-supplemented in case $\tau = Rad$, we have to mention the following definitions:

A commutative ring R is a *valuation* ring if it satisfies one of the following three equivalent conditions:

(1) for any two elements a and b, either a divides b or b divides a.

(2) the ideals of R are linearly ordered by inclusion.

(3) R is a local ring and every finitely generated ideal is principal.

A module M is called *finitely presented* if $M \cong F/K$ for some finitely generated free module F and finitely generated submodule K of M.

Example 1. Let R be a commutative local ring which is not a valuation ring and let $n \ge 2$. By [16, Theorem 2], there exists a finitely presented indecomposable module $M = R^{(n)}/K$ which cannot be generated by fewer than n elements. By [5, Corollary 1.6], $R^{(n)}$ is \oplus -supplemented and hence H-supplemented by [9, Proposition 2.1]. Being finitely generated, $R^{(n)}$ is Rad-H-supplemented. Since M is not cyclic, it is not \oplus -supplemented, and hence not H-supplemented. Since M is finitely generated, it is not Rad-H-supplemented. (Note that since R/JacR is semisimple, the preradical Rad is also cohereditary.)

In [8] and [10], the authors give some conditions for a factor module of an *H*-supplemented module to be *H*-supplemented. Now we give analogous of their conditions for a τ -*H*-supplemented module. **Theorem 1.** Let τ be a cohereditary preradical. Let M be a τ -H-supplemented module and $X \leq M$. If for every direct summand K of M, (X+K)/X is a direct summand of M/X, then M/X is τ -H-supplemented.

Proof. Let $N/X \leq M/X$. Since M is τ -H-supplemented, there exists a direct summand D of M such that $(N + D)/N \subseteq \tau(M/N)$ and $(N + D)/D \subseteq \tau(M/D)$. By assumption, (D + X)/X is a direct summand of M/X. Since τ is a cohereditary preradical, it is easy to check that $\frac{N/X + (D+X)/X}{N/X} \subseteq \tau(\frac{M/X}{N/X})$ and $\frac{N/X + (D+X)/X}{(D+X)/X} \subseteq \tau(\frac{M/X}{(D+X)/X})$. Hence M/X is τ -H-supplemented.

Let M be a module. Then M is called *distributive* if its lattice of submodules is a distributive lattice, equivalently for submodules K, L, N of $M, N+(K\cap L) = (N+K)\cap (N+L)$ or $N\cap (K+L) = (N\cap K)+(N\cap L)$.

Corollary 1. Let M be a τ -H-supplemented module for a cohereditary preradical τ .

(1) If M is a distributive module, then M/X is τ -H-supplemented for every submodule X of M.

(2) Let $N \leq M$ such that for each decomposition $M = M_1 \oplus M_2$ we have $N = (N \cap M_1) \oplus (N \cap M_2)$. Then M/N is τ -H-supplemented.

(3) Let X be a projection invariant submodule of M. Then M/X is τ -H-supplemented. In particular, for every fully invariant submodule A of M, M/A is τ -H-supplemented.

Proof. (1) Let D be a direct summand of M. Then $M = D \oplus D'$ for some submodule D' of M. Now M/X = [(D+X)/X] + [(D'+X)/X] and $X = X + (D \cap D') = (X+D) \cap (X+D')$. So $M/X = [(D+X)/X] \oplus [(D'+X)/X]$. By Theorem 1, M/X is τ -H-supplemented.

(2) Let $L/N \leq M/N$. Since M is τ -H-supplemented, there exists a direct summand D of M and a submodule X of M such that $X/L \subseteq \tau(M/L)$ and $X/D \subseteq \tau(M/D)$. Let $M = D \oplus D'$. Then by hypothesis, $N = (D \cap N) \oplus (D' \cap N) = (D + N) \cap (D' + N)$. So, $(D + N)/N \oplus (D' + N)/N = M/N$. Now we have $\frac{X/N}{L/N} \subseteq \tau(\frac{M/N}{L/N})$ and $\frac{X/N}{(D+N)/N} \subseteq \tau(\frac{M/N}{(D+N)/N})$ and hence M/N is τ -H-supplemented by Proposition 1. (3) Clear by (2).

Proposition 2. Let M be a τ -H-supplemented module for a cohereditary preradical τ and $N \leq M$. If for each idempotent $e: M \to M$ there exists an idempotent $f: M/N \to M/N$ such that $\frac{(N+e(M))/N}{T/N} \subseteq \tau(\frac{M/N}{T/N})$ where Imf = T/N, then M/N is τ -H-supplemented.

Proof. Let $Y/N \leq M/N$. Since M is τ -H-supplemented, there exists an idempotent $e: M \to M$ and a submodule X of M such that $X/e(M) \subseteq$

 $\tau(M/e(M))$ and $X/Y \subseteq \tau(M/Y)$ by Proposition 1. By hypothesis, there exists an idempotent $f: M/N \to M/N$ with Imf = T/N such that $(N + e(M))/T \subseteq \tau(M/T)$. Now, T/N is a direct summand of M/N and $T/N \subseteq X/N$. Clearly $\frac{X/N}{T/N} \subseteq \tau(\frac{M/N}{T/N})$ and $\frac{X/N}{Y/N} \subseteq \tau(\frac{M/N}{Y/N})$.

Proposition 3. Let τ be a cohereditary preradical and M_0 a direct summand of a module M such that for every decomposition $M = N \oplus K$ of M, there exist submodules N' of N and K' of K such that $M = M_0 \oplus N' \oplus K'$ with $\tau(K') = K'$. If M is τ -H-supplemented, then M/M_0 is τ -H-supplemented.

Proof. Let $N/M_0 \leq M/M_0$. Since M is τ -H-supplemented, there exists a decomposition $M = K \oplus S$ such that $(N + K)/N \subseteq \tau(M/N)$ and $(N + K)/K \subseteq \tau(M/K)$. By hypothesis, $M = M_0 \oplus N' \oplus K'$ for $N' \leq K$ and $K' \leq S$ with $\tau(K') = K'$. Now it is easy to see that $(M_0 \oplus N')/M_0$ is a τ -H-supplement of N/M_0 in M/M_0 .

Let M be an R-module and τ a preradical. By $P_{\tau}(M)$ we denote the sum of all submodules N of M with $\tau(N) = N$. The following Lemma will be very useful for us to prove Corollary 2.

Lemma 1. Let τ be any preradical and let M be any module. Then (1) $\tau(P_{\tau}(M)) = P_{\tau}(M)$. (2) $P_{\tau}(M)$ is a fully invariant submodule of M. (3) If $M = N \oplus K$, then $P_{\tau}(M) = P_{\tau}(N) \oplus P_{\tau}(K)$.

Corollary 2. Let M be a τ -H-supplemented module for a cohereditary preradical τ . If $P_{\tau}(M)$ is a direct summand of M, then $P_{\tau}(M)$ and $M/P_{\tau}(M)$ are τ -H-supplemented.

Proof. By Corollary 1(3) and Lemma 1(2), $M/P_{\tau}(M)$ is τ -H-supplemented. Let L be a submodule of M such that $M = P_{\tau}(M) \oplus L$. Let $M = N \oplus K$. Now, by Lemma 1(3), $M = P_{\tau}(N) \oplus P_{\tau}(K) \oplus L$. Therefore $M/L \cong P_{\tau}(M)$ is τ -H-supplemented by Proposition 3 and Lemma 1(1).

2. Direct summands of τ -H-supplemented modules

In this section we will consider direct summands of τ -H-supplemented modules. We investigate some conditions for direct summands of a τ -H-supplemented module to be τ -H-supplemented. We call a module M completely τ -H-supplemented provided every direct summand of M is τ -H-supplemented. The following Theorem is an analogue of [10, Theorem 2.7].

Theorem 2. (1) Every τ -lifting module is completely τ -H-supplemented. (2)Let M be a τ -H-supplemented module for a cohereditary preradical τ . If M has the SSP, then M is completely τ -H-supplemented.

Proof. (1) It is clear since by [2, 2.10] every direct summand of a τ -lifting module is again τ -lifting.

(2) Assume that M is τ -H-supplemented and M has the SSP. Let N be a direct summand of M. We will show that N is τ -H-supplemented. Let $M = N \oplus N'$ for some submodule N' of M. Suppose that A is a direct summand of M. Since M has the SSP, A + N' is a direct summand of M. Let $M = (A + N') \oplus B$ for some $B \leq M$. Then $M/N' = (A + N')/N' \oplus (B + N')/N'$. Hence by Theorem 1, M/N' is τ -H-supplemented and so N is τ -H-supplemented.

Proposition 4. Let M be a duo module. Then M has the SSP.

Proof. See [10, Page 969].

Corollary 3. Let τ be a cohereditary preradical. Let M be a τ -H-supplemented duo module. Then M is completely τ -H-supplemented.

The following is an example for Theorem 2(2) in case $\tau = Rad$.

Example 2. Let F be a field and R the upper triangular matrix ring $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$. Since R/JacR is semisimple, the preradical Rad is cohereditary. For submodules $A = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ and $B = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$, let $M = A \oplus (R/B)$. Then M is H-supplemented by [6, Lemma 3]. Also M has the SSP. Therefore M is a completely τ -H-supplemented module by Theorem 2(2).

3. Direct sums of τ -H-supplemented modules

The following example shows that any (finite) direct sum of τ -H-supplemented modules need not be τ -H-supplemented for $\tau = Rad$. We will show that under some conditions it will be true.

Example 3. Let R be a commutative local ring and M a finitely generated R-module. Assume $M \cong \bigoplus_{i=1}^{n} R/I_i$. Since every I_i is fully invariant in R, every R/I_i is τ -H-supplemented by Corollary 1(3). By [11, Lemma A.4], M is τ -H-supplemented if $I_1 \leq I_2 \leq \ldots \leq I_n$. If we don't have the condition $I_1 \leq I_2 \leq \ldots \leq I_n$, M is not τ -H-supplemented. (Note that since M is finitely generated, M is H-supplemented if and only if it is τ -H-supplemented.)

We call a module $M \tau$ -semilocal provided that $M/\tau(M)$ is semisimple. Clearly τ -supplemented modules are τ -semilocal.

Lemma 2. Let M be a τ -H-supplemented module for a cohereditary preradical τ . Then M is τ -semilocal.

Proof. Let $N/\tau(M) \leq M/\tau(M)$. Since M is τ -H-supplemented, there exists a direct summand D of M such that $(N + D)/N \subseteq \tau(M/N)$ and $(N + D)/D \subseteq \tau(M/D)$. Since $D \leq_d M$, $M = D \oplus D'$ for some submodule D' of M. Then M = D' + N. It follows that $M/\tau(M) = N/\tau(M) + (D' + \tau(M))/\tau(M)$. Since $N \cap D' \subseteq \tau(D')$, $M/\tau(M) = N/\tau(M) \oplus (D' + \tau(M))/\tau(M)$. Hence $M/\tau(M)$ is semisimple. \Box

Proposition 5. Let M be a module. Then the following are equivalent for a cohereditary preradical τ :

(1) M is τ -H-supplemented;

(2) M is τ -semilocal and each submodule (direct summand) of $M/\tau(M)$ lifts to a direct summand of M.

Proof. (1) \Rightarrow (2) By Lemma 2, we only prove the last statement. Let $N/\tau(M) \leq M/\tau(M)$. Since M is τ -H-supplemented, there exists $D \leq_d M$ such that $(N + D)/N \subseteq \tau(M/N)$ and $(N + D)/D \subseteq \tau(M/D)$. Then $D \subseteq N$. Hence $N/\tau(M) = (D + \tau(M))/\tau(M)$. This means $N/\tau(M)$ lifts to D.

(2) \Rightarrow (1) Let $N \leq M$. Then by assumption, $(N + \tau(M))/\tau(M) = \overline{N}$ is a direct summand of $M/\tau(M) = \overline{M}$. Then by assumption $\overline{N} = \overline{L}$ such that $M = L \oplus K$. The rest is easy by taking L as a τ -H-supplement of N in M.

Theorem 3. Let τ be a cohereditary preradical. Let $M = \bigoplus_{i \in I} H_i$ be a direct sum of τ -H-supplemented modules H_i ($i \in I$). Assume that each direct summand of $M/\tau(M)$ lifts to a direct summand of M. Then M is τ -H-supplemented.

Proof. Clearly $M/\tau(M)$ is semisimple by Lemma 2. Now M is τ -H-supplemented by Proposition 5.

Theorem 4. Let τ be a cohereditary preradical. Let $M = M_1 \oplus M_2$ be a duo module. Then M is τ -H-supplemented if and only if M_1 and M_2 are τ -H-supplemented.

Proof. Note that for $A \leq M$, we can write $A = (A \cap M_1) \oplus (A \cap M_2)$. (\Rightarrow) Assume that M is τ -H-supplemented. Since M_1 and M_2 are fully invariant submodules of M, M_1 and M_2 are τ -H-supplemented by Corollary 1(3). (\Leftarrow) Suppose that M_1 and M_2 are τ -H-supplemented. Let $A \leq M$. Then $A = (A \cap M_1) \oplus (A \cap M_2)$. By assumption, there exist direct summands D_1 of M_1 and D_2 of M_2 such that $((A \cap M_1) + D_1)/(A \cap M_1) \subseteq \tau(M_1/(A \cap M_1))$, $((A \cap M_1) + D_1)/D_1 \subseteq \tau(M_1/D_1)$ and $((A \cap M_2) + D_2)/(A \cap M_2) \subseteq \tau(M_2/(A \cap M_2))$, $((A \cap M_2) + D_2)/D_2 \subseteq \tau(M_2/D_2)$. It is not hard to see that $(A + (D_1 \oplus D_2))/A \subseteq \tau(M/A)$ and $(A + (D_1 \oplus D_2))/(D_1 \oplus D_2) \subseteq \tau(M/(D_1 \oplus D_2))$. Namely, $D_1 \oplus D_2$ is a τ -H-supplement of A in M. Hence M is τ -H-supplemented.

Definition 2. Let M and N be two modules. Let τ be a preradical. Then N is called τ -M-projective if, for any $K \leq M$ and any homomorphism $f : N \longrightarrow M/K$ there exists a homomorphism $h : N \longrightarrow M$ such that $Im(f - \pi h) \subseteq \tau(M/K)$, where $\pi : M \longrightarrow M/K$ is the natural epimorphism.

Lemma 3. Let $M = M_1 \oplus M_2$. Consider the following conditions:

- 1. M_1 is τ - M_2 -projective;
- 2. For every $K \leq M$ with $K + M_2 = M$, there exists $M_3 \leq M$ such that $M = M_2 \oplus M_3$ and $(K + M_3)/K \subseteq \tau(M/K)$.

Then $(1) \Rightarrow (2)$.

Proof. Let $K \leq M$ and $M = K + M_2$. Consider the epimorphism π : $M_2 \longrightarrow M/K$ with $m_2 \mapsto m_2 + K(m_2 \in M_2)$ and the homomorphism $h: M_1 \longrightarrow M/K$ with $m_1 \mapsto m_1 + K(m_1 \in M_1)$. Since M_1 is τ - M_2 projective, there exist a homomorphism $\overline{h}: M_1 \longrightarrow M_2$ and a submodule X of M with $K \subseteq X$ such that $Im(h - \pi \overline{h}) = X/K \subseteq \tau(M/K)$. Let $M_3 = \{a - \overline{h}(a) \mid a \in M_1\}$. Clearly $M = M_2 \oplus M_3$. Since $K + M_3 \subseteq X$, $(K + M_3)/K \subseteq X/K$. Hence $(K + M_3)/K \subseteq \tau(M/K)$. \Box

Lemma 4. Let A and $\{M_i\}_{i=1}^n$ be modules. If each M_i is τ -A-projective, for $i = 1, 2, \ldots n$, then $\bigoplus_{i=1}^n M_i$ is τ -A-projective.

Proof. The proof is straightforward.

Theorem 5. Let τ be a cohereditary preradical. Let $M = M_1 \oplus M_2$ be a τ -supplemented module. Assume M_1 is τ - M_2 -projective (or M_2 is τ - M_1 -projective). If M_1 and M_2 are τ -H-supplemented, then M is τ -Hsupplemented.

Proof. Let $Y \leq M$. **Case 1:** Let $M = Y + M_2$. Then by Lemma 3, there exists $M_3 \leq M$ such that $M = M_3 \oplus M_2$ and $(Y + M_3)/Y \subseteq \tau(M/Y)$. Since M/M_3 is τ -H-supplemented, there exist $X/M_3 \leq M/M_3$ and a direct summand D/M_3

of M/M_3 such that $\frac{X/M_3}{(Y+M_3)/M_3} \subseteq \tau(\frac{M/M_3}{(Y+M_3)/M_3})$ and $\frac{X/M_3}{D/M_3} \subseteq \tau(\frac{M/M_3}{D/M_3})$ by Proposition 1. Clearly, D is a direct summand of M. It is easy to check that $X/D \subseteq \tau(M/D)$ and $X/Y \subseteq \tau(M/Y)$. Therefore M is τ -H-supplemented by Proposition 1.

Case 2: Let $Y + M_2 \neq M$. Since M is τ -supplemented, $M/\tau(M)$ is semisimple. Then there exists a submodule K of M containing $\tau(M)$ such that $M/\tau(M) = K/\tau(M) \oplus (Y+M_2+\tau(M))/\tau(M)$. So $M = (K+Y)+M_2$ and $\tau(M) = K \cap (Y + M_2 + \tau(M)) = \tau(M) + (K \cap (Y + M_2))$ and hence $K \cap (Y + M_2) \subseteq \tau(M)$. By Lemma 3, there exists $M_4 \leq M$ such that $M = M_2 \oplus M_4$ and $(K + Y + M_4)/(K + Y) \subseteq \tau(M/(K + Y))$. This implies that $K + Y + M_4 \subseteq \tau(M) + K + Y = K + Y$. Now M/M_2 and M/M_4 are τ -H-supplemented. Therefore there exist submodules X_1/M_2 of M/M_2 and X_2/M_4 of M/M_4 and direct summands D_1/M_2 of M/M_2 and D_2/M_4 of M/M_4 such that $\frac{X_1/M_2}{(Y+K+M_4)/M_4} \subseteq \tau(\frac{M/M_4}{(Y+K+M_4)/M_4})$ and $\frac{X_2/M_4}{D_2/M_4} \subseteq \tau(\frac{M/M_4}{D_2/M_4})$. Clearly, $D_1 \cap D_2$ is a direct summand of M. Let $M = (D_1 \cap D_2) \oplus L$ for some submodule L of M. Then by [7, Lemma 1.2], $M = D_2 \oplus (D_1 \cap L)$. Note that we have that $X_1 \subseteq \tau(M) + D_1$, $X_1 \subseteq \tau(M) + M_2 + Y$, $X_2 \subseteq \tau(M) + D_2$ and $X_2 \subseteq \tau(M) + Y + K + M_4 = K + Y$. Now,

$$X_1 \cap X_2 \subseteq (\tau(M) + M_2 + Y) \cap (Y + K) \\ = (\tau(M) + Y) + (M_2 \cap (Y + K)) \\ \subseteq \tau(M) + Y + [K \cap (Y + M_2)] + [Y \cap (K + M_2)] \\ = \tau(M) + Y$$

and

$$X_1 \cap X_2 \subseteq (\tau(M) + D_1) \cap (\tau(M) + D_2) = (\tau(D_2) + D_1) \cap (\tau(D_1 \cap L) + D_2) = \tau(D_2) + [(D_2 + \tau(D_1 \cap L)) \cap D_1] = \tau(D_2) + \tau(D_1 \cap L) + (D_1 \cap D_2) \subseteq \tau(M) + (D_1 \cap D_2).$$

Therefore $(X_1 \cap X_2)/Y \subseteq \tau(M/Y)$ and $(X_1 \cap X_2)/(D_1 \cap D_2) \subseteq \tau(M/(D_1 \cap D_2))$. Thus M is τ -H-supplemented by Proposition 1.

Corollary 4. Let τ be a cohereditary preradical. Let $M = \bigoplus_{i=1}^{n} M_i$ be a τ -supplemented module. Assume that M_i is τ - M_j -projective for all j > i. If each M_i is τ -H-supplemented, then M is τ -H-supplemented.

Proof. By Lemma 4 and Theorem 5.

4. Relations between τ -H-supplemented modules and the others

A module M is called τ - \oplus -supplemented if for every $A \leq M$, there exists a $B \leq_d M$ such that A + B = M and $A \cap B \subseteq \tau(B)$. Clearly every τ lifting module is τ - \oplus -supplemented and every τ - \oplus -supplemented module is τ -supplemented.

Next we will show that under some conditions every τ - \oplus -supplemented module is τ -H-supplemented.

Proposition 6. Let τ be any preradical. Assume M is τ - \oplus -supplemented such that whenever $M = M_1 \oplus M_2$ then M_1 and M_2 are relatively projective. Then M is τ -H-supplemented.

Proof. Let $N \leq M$. Since M is τ - \oplus -supplemented, there exists a decomposition $M = M_1 \oplus M_2$ such that $M = N + M_2$ and $N \cap M_2 \subseteq \tau(M_2)$ for submodules M_1, M_2 of M. By hypothesis, M_1 is M_2 -projective. By [11, Lemma 4.47], we obtain $M = A \oplus M_2$ for some submodule A of M such that $A \leq N$. Then $N = A \oplus (M_2 \cap N)$. It is easy to see that $(N + A)/A \subseteq \tau(M/A)$ and $(N + A)/N \subseteq \tau(M/N)$. Thus M is τ -H-supplemented.

Corollary 5. Let τ be any preradical. Let M be a τ - \oplus -supplemented module. If M is projective, then M is τ -H-supplemented.

Let $e = e^2 \in R$. Then e is called a *left* (*right*) semicentral idempotent if xe = exe (ex = exe), for all $x \in R$. The set of all left (right) semicentral idempotents is denoted by $S_l(R)$ ($S_r(R)$). A ring R is called *Abelian* if every idempotent is central.

Proposition 7. Let τ be a preradical and M an R-module such that End(M) is Abelian and $X \leq M$ implies $X = \sum_{i \in I} h_i(M)$ where $h_i \in End(M)$. If M is τ - \oplus -supplemented, then M is τ -H-supplemented and satisfies the (D_3) -condition.

Proof. Let $X \leq M, X = \sum_{i \in I} h_i(M)$ with $h_i \in End(M)$. Since M is τ - \oplus -supplemented, there exists a direct summand eM such that X + eM = M and $(X \cap eM) \subseteq \tau(eM)$ for some $e^2 = e \in End(M)$. Since End(M) is Abelian, $(1-e)X = (1-e)M = (1-e)\sum_{i \in I} h_i(M) = \sum_{i \in I} h_i(1-e)(M) \subseteq X$. Therefore $X = (1-e)M \oplus (X \cap eM)$. Then (1-e)M is a τ -H-supplement of X. If eM + fM = M for $e^2 = e$, $f^2 = f \in End(M)$, then $eM \cap fM = efM$ with $(ef)^2 = ef$. So M satisfies the (D_3) -condition. \Box

Recall that for a commutative ring R, an R-module M is said to be a *multiplication module* if for each $X \leq M$, X = MA for some ideal A of R.

Corollary 6. Let τ be a preradical and M a τ - \oplus -supplemented module. If M satisfies one of the following conditions, then M is τ -H-supplemented. (1) M is a multiplication module and R is commutative. (2) M is cyclic and R is commutative.

Proof. (1) Assume M is a multiplication module. Let $X \leq M$. Then X = MA for some ideal A of R. For each $a \in A$, define $h_a : M \to M$ by $h_a(m) = ma$ for all $m \in M$. Then h_a is an R-homomorphism and $X = MA = \sum_{a \in A} h_a(M)$. Since every multiplication module is a duo module, thus if $e^2 = e \in S = End(M)$, then $e, 1 - e \in S_l(S)$. Therefore e is central. So End(M) is Abelian. By Proposition 7, M is τ -H-supplemented. (2) Clear by (1) since every cyclic module over a commutative ring is a multiplication module.

Now we investigate the relations between τ -H-supplemented modules and the others. A module M is called *amply* τ -supplemented if for any submodules K and V of M such that M = K + V, there is a submodule U of V such that K + U = M and $K \cap U \subseteq \tau(U)$.

Lemma 5. Let τ be any preradical and let M be a projective module. The following are equivalent:

- (1) M is τ -supplemented;
- (2) M is amply τ -supplemented.

Proof. Clearly an amply τ -supplemented module is τ -supplemented. For the converse: Let M = U + V and X be a τ -supplement of U in M. For an $f \in End(M)$ with $Im(f) \subseteq V$ and $Im(I - f) \subseteq U$ we have $f(U) \subseteq U$, M = U + f(X) and $f(U \cap X) = U \cap f(X)$ (from u = f(x) we derive $x - u = (I - f)(x) \in U$ and $x \in U$). Since $U \cap X \subseteq \tau(X)$, we also have $U \cap f(X) \subseteq \tau(f(X))$, i.e. f(X) is a τ -supplement of U with $f(X) \subseteq V$. Hence M is amply τ -supplemented. \Box

Let M be any module. A submodule U of M is called *quasi strongly lifting* (QSL) in M if whenever (A + U)/U is a direct summand of M/U, there exists a direct summand P of M such that $P \leq A$ and P+U = A+U(see [1]).

Lemma 6. Let τ be a cohereditary preradical and let M be any module. The following are equivalent:

- (1) M is τ -lifting;
- (2) M is τ -H-supplemented and $\tau(M)$ is QSL in M.

Proof. By Lemma 2 and [1, Lemma 3.5 and Proposition 3.6].

Lemma 7. Let τ be any preradical and let M be a projective module such that every τ -supplement submodule of M is a direct summand of M. The following are equivalent:

(1) M is τ -supplemented;

(2) M is amply τ -supplemented;

(3) M is τ -lifting;

(4) M is τ - \oplus -supplemented.

Proof. (1) \Leftrightarrow (2) By Lemma 5.

 $(1) \Rightarrow (3)$ By [1, Lemma 3.2].

 $(3) \Rightarrow (1)$ and $(1) \Leftrightarrow (4)$ are clear by definitions and the assumption that every τ -supplement submodule of M is a direct summand of M. \Box

Now we have the following Theorem:

Theorem 6. Let τ be a cohereditary preradical. Let M be a projective module such that every τ -supplement submodule of M is a direct summand. The following are equivalent:

- (1) M is τ -supplemented;
- (2) M is τ -lifting;

(3) M is amply τ -supplemented;

(4) M is τ -H-supplemented and $\tau(M)$ is QSL in M;

(5) M is τ - \oplus -supplemented.

As we see in Example 3 a finite direct sum of τ -H-supplemented modules need not be τ -H-supplemented. We will show that a finite direct sum of τ - \oplus -supplemented modules is τ - \oplus -supplemented.

Lemma 8. Let $N, L \leq M$ such that N + L has a τ -supplement H in M and $N \cap (H + L)$ has a τ -supplement G in N. Then H + G is a τ -supplement of L in M.

Proof. Let H be a τ -supplement of N+L in M and G be a τ -supplement of $N \cap (H+L)$ in N. Then M = (N+L)+H such that $(N+L) \cap H \subseteq \tau(H)$ and $N = [N \cap (H+L)] + G$ such that $(H+L) \cap G \subseteq \tau(G)$. Since $(H+G) \cap L \subseteq [(G+L) \cap H] + [(H+L) \cap G] \subseteq \tau(H) + \tau(G) \subseteq \tau(H+G),$ H+G is a τ -supplement of L in M.

Theorem 7. For a ring R, any finite direct sum of τ - \oplus -supplemented R-modules is τ - \oplus -supplemented.

Proof. Let $M = M_1 \oplus ... \oplus M_n$ and M_i be a τ - \oplus -supplemented module for each $1 \leq i \leq n$. To prove that M is τ - \oplus -supplemented it is sufficient to assume n = 2.

Let $L \leq M$. Then $M = M_1 + M_2 + L$ so that $M_1 + M_2 + L$ has a τ -supplement 0 in M. Let H be a τ -supplement of $M_2 \cap (M_1 + L)$ in M_2 such that $H \leq_d M_2$. By Lemma 8, H is a τ -supplement of $M_1 + L$ in M. Let K be a τ -supplement of $M_1 \cap (L + H)$ in M_1 such that $K \leq_d M_1$. Again by applying Lemma 8, we get that H + K is a τ -supplement of L in M. Since $H \leq_d M_2$ and $K \leq_d M_1$, it follows that $H + K = H \oplus K \leq_d M$. Thus $M = M_1 \oplus M_2$ is τ - \oplus -supplemented. \Box

Note that by the same proof as the proof of Theorem 7, any finite sum of τ -supplemented modules is τ -supplemented.

Theorem 8. Let τ be a cohereditary preradical. Let R be a τ - \oplus -supplemented ring (i.e. R_R is τ - \oplus -supplemented) such that every finite direct sum of the copies of R is distributive. Then the following are equivalent: (1) R is τ -H-supplemented;

(2) Every finitely generated free R-module is τ -H-supplemented;

(3) Every finitely generated projective R-module is τ -H-supplemented;

(4) If F is a finitely generated free R-module and N a fully invariant submodule, then F/N is τ -H-supplemented.

Proof. (1) \Rightarrow (3) Let M be a finitely generated projective R-module. Then M is isomorphic to a direct summand of a finitely generated free module F. By Corollary 4, F is τ -H-supplemented. Thus M is τ -H-supplemented by Corollary 1(1).

 $(3) \Rightarrow (2) \Rightarrow (1)$ and $(4) \Rightarrow (1)$ are clear.

(2) \Rightarrow (4) By (2), F is τ -H-supplemented. The result follows from Corollary 1(3).

We next consider the preradical \overline{Z} .

Let M be a module and S denote the class of all small modules. Talebi and Vanaja defined $\overline{Z}(M)$ in [13] as follows:

 $\overline{Z}(M) = \bigcap \{kerg \mid g \in \text{Hom}(M, L), L \in S\}$. The module M is called cosingular (non-cosingular) if $\overline{Z}(M) = 0$ ($\overline{Z}(M) = M$). Clearly every non-cosingular module is \overline{Z} -H-supplemented. Also if R is a non-cosingular ring, then every R-module is \overline{Z} -H-supplemented by [13, Proposition 2.5 and Corollary 2.6].

Let M be a module and τ_M a preradical on $\sigma[M]$. In [12], the authors call a module $N \in \sigma[M] \tau_M$ -semiperfect if it satisfies one of the following conditions (see [12, Proposition 2.1 and Definition 2.2]):

(1) For every submodule K of N there exists a decomposition $K = A \oplus B$ such that A is a projective direct summand of N in $\sigma[M]$ and $B \subseteq \tau_M(N)$;

(2) For every submodule K of N, there exists a decomposition $N = A \oplus B$ such that A is projective in $\sigma[M]$, $A \leq K$ and $K \cap B \subseteq \tau_M(N)$.

If $\sigma[M] = \text{Mod} - \text{R}$, then they call N τ -semiperfect.

By the above definition, every τ -semiperfect module is τ -lifting and hence τ -H-supplemented. Also if M is projective we have the following: τ -semiperfect $\Leftrightarrow \tau$ -lifting $\Leftrightarrow \tau$ - \oplus -supplemented $\Rightarrow \tau$ -H-supplemented

In [12, Theorem 2.23], the authors showed that their τ -semiperfect module definition agrees with the definition of τ -semiperfect module in the sense of [2] for a projective module and for the preradical *Soc.* In [14], Tribak and Keskin Tütüncü studied \overline{Z} -lifting modules and \overline{Z} -semiperfect modules in the sense of [12]. They also investigate some conditions for the preradical \overline{Z} for two definitions of τ -semiperfect modules to be agreed (see [14, Proposition 5.8 and Proposition 5.11]).

A τ -H-supplemented module need not be H-supplemented. Of course if $\tau(M) \ll M$ and τ is cohereditary, then every τ -H-supplemented module is H-supplemented.

Example 4. Let K be a field and let $R = \prod_{n\geq 1} K_n$ with $K_n = K$. By [14, Example 4.1(1)] R is not semiperfect. Since R is projective, R is not \oplus -supplemented by [5, Lemma 1.2]. Hence R is not H-supplemented. Again by [14, Example 4.1(1)], the module R is \overline{Z} -semiperfect in the sense of [12] and so it is \overline{Z} -H-supplemented.

If R is a DVR (Discrete Valuation Ring), then the R-module R is semiperfect and hence H-supplemented.

Now we give an equivalent condition for a module to be \overline{Z} - \oplus -supplemented module under some assumptions.

Proposition 8. Let R be a commutative ring, P a projective module with $Rad(P) \ll P$ and assume P to have finite hollow dimension. Then the following are equivalent:

(1) P is \overline{Z} - \oplus -supplemented;

(2) $P = P_1 \oplus P_2 \oplus P_3$ with $P_1 \oplus$ -supplemented and $Rad(P_1) = \overline{Z}(P_1)$, P_2 semisimple and $\overline{Z}(P_3) = P_3$.

Proof. (1) \Rightarrow (2) See the proof of [14, Corollary 4.3] and [5, Lemma 2.1].

 $(2) \Rightarrow (1)$ By [14, Corollary 4.3] all P_1 , P_2 and P_3 are Z-semiperfect in the sense of [12] and hence \overline{Z} - \oplus -supplemented. By Theorem 7, P is \overline{Z} - \oplus -supplemented. \Box

References

 M. Alkan, On τ-lifting and τ-semiperfect modules, Turkish J. Math., N.33, 2009, pp.117-130.

- [2] Kh. Al-Takhman, C. Lomp and R. Wisbauer, τ-complemented and τ-supplemented modules, Algebra and Discrete Mathematics, N.3, 2006, pp.1-15.
- [3] L. Bican, T. Kepka and P. Nemec, *Rings, Modules and Preradicals*, Lect. Notes Pure and App. Math., 75, Marcel Dekker, New York-Basel, 1982.
- [4] J. L. Garcia, Properties of direct summands of modules, Comm. Alg., N.17(1) 1989, pp.73-92.
- [5] A. Harmanci, D. Keskin and P. F. Smith, On ⊕-supplemented modules, Acta Math. Hungar., N.83, 1999, pp.161-169.
- [6] D. Keskin, *Finite direct sums of* (D₁)-modules, Turkish J. Math., N.22(1), 1998, pp.85-91.
- [7] D. Keskin, On lifting modules, Comm. Alg., N.28(7), 2000, pp.3427-3440.
- [8] D. Keskin Tütüncü, M. J. Nematollahi and Y. Talebi, On H-supplemented modules, Alg. Coll., N.18(Spec 1), 2011, pp.915-924
- [9] D. Keskin, Characterizations of right perfect rings by ⊕-supplemented modules, Contemporary Mathematics, N.259, 2000, pp.313-318.
- [10] M. T. Koşan and D. Keskin Tütüncü, *H-supplemented duo modules*, Journal of Algebra and its Applications, N.6(6) 2007, pp.965-971.
- [11] S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge, 1990.
- [12] A. Ç. Özcan and M. Alkan, Semiperfect modules with respect to a preradical, Comm. Alg., N.34, 2006 pp.841-856.
- [13] Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Alg., N.30(3), 2002, pp.1449-1460.
- [14] R. Tribak and D. Keskin Tütüncü, On Z_M-semiperfect modules, East-West J. Math., N.8(2), 2006, pp.193-203.
- [15] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, Philadelphia 1991.
- [16] R.B. Warfield Jr., Decomposability of finitely presented modules, Proc. Amer. Math. Soc., N.25, 1970, pp.167-172.

Yahya Talebi, Ali Reza Moniri Hamzekolaei	Department of Mathematics, Faculty of Basic Sci- ence, University of Mazandaran, Babolsar, Iran <i>E-Mail:</i> talebi@umz.ac.ir, a.monirih@umz.ac.ir
Derya Keskin Tütüncü	Department of Mathematics, Hacettepe Univer- sity, 06800 Beytepe, Ankara, Turkey <i>E-Mail:</i> keskin@hacettepe.edu.tr

CONTACT INFORMATION

Received by the editors: 14.11.2009 and in final form 01.10.2011.