Показати простий запис статті
dc.contributor.author |
Gaglione, A.M. |
|
dc.contributor.author |
Lipschutz, S. |
|
dc.contributor.author |
Spellman, D. |
|
dc.date.accessioned |
2019-06-15T16:41:10Z |
|
dc.date.available |
2019-06-15T16:41:10Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
Some properties of nilpotent groups / A.M. Gaglione, S. Lipschutz, D. Spellman // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 66–77. — Бібліогр.: 8 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification:20F18,20F05,20F24,16D10. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/154599 |
|
dc.description.abstract |
Property S, a finiteness property which can hold in infinite groups, was introduced by Stallings and others and shown to hold in free groups. In [2] it was shown to hold in nilpotent groups as a consequence of a technical result of Mal'cev. In that paper this technical result was dubbed property R. Hence, more generally, any property R group satisfies property S. In [7] it was shown that property R implies the following (labeled there weak property R) for a group G: If G₀ is any subgroup in G and G₀* is any homomorphic image of G₀, then the set of torsion elements in G₀* forms a locally finite subgroup. It was left as an open question in [7] whether weak property R is equivalent to property R. In this paper we give an explicit counterexample thereby proving that weak property R is strictly weaker than property R. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Some properties of nilpotent groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті