Анотація:
For every discrete group G, the Stone-Čech compactification βG of G has a natural structure of compact right topological semigroup. Assume that G is endowed with some left invariant topology I and let τ¯ be the set of all ultrafilters on G converging to the unit of G in I. Then τ¯ is a closed subsemigroup of βG. We survey the results clarifying the interplays between the algebraic properties of τ¯ and the topological properties of (G,I)
and apply these results to solve some open problems in the topological group theory.
The paper consists of 13 sections: Filters on groups, Semigroup of ultrafilters, Ideals, Idempotents, Equations, Continuity in βG and G∗, Ramsey-like ultrafilters, Maximality, Refinements, Resolvability, Potential compactness and ultraranks, Selected open questions.