Наукова електронна бібліотека
періодичних видань НАН України

Перегляд Algebra and Discrete Mathematics, 2008, № 4 за назвою

Репозиторій DSpace/Manakin

Перегляд Algebra and Discrete Mathematics, 2008, № 4 за назвою

Сортувати за: Порядок: Результатів:

  • Banakh, T.; Gavrylkiv, V. (Algebra and Discrete Mathematics, 2008)
    Given a countable group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x ...
  • Dokuchaev, M.A.; Kirichenko, V.V.; Novikov, B.V.; Plakhotnyk, M.V. (Algebra and Discrete Mathematics, 2008)
    We introduce the notion of a Gorenstein Latin square and consider loops and quasigroups related to them. We study some properties of normalized Gorenstein Latin squares and describe all of them with order n≤8.
  • Автор відсутній (Algebra and Discrete Mathematics, 2008)
    The Conference in Ring Theory dedicated to the 70th anniversary of Professor Miguel Ferrero was held from 25 to 27 of Sepetember of 2008 in Porto Alegre, Brazil
  • Kosakowska, J. (Algebra and Discrete Mathematics, 2008)
    We define and investigate Lie algebras associated with quadratic forms. We also present their connections with Lie algebras and Ringel-Hall algebras associated with representation directed algebras.
  • Автор відсутній (Algebra and Discrete Mathematics, 2008)
    Mathematics competition 2009 sponsored by Shevchenko Scientific Society (USA) and U.S.-Ukraine Foundation with the support of Ukrainian and Kyiv Mathematical Societies and hon. Roman Popadiuk – first U.S. ambassador to ...
  • Dokuchaev, M.; Kirichenko, V.; Paques, A.; Sant’Ana, A. (Algebra and Discrete Mathematics, 2008)
  • Автор відсутній (Algebra and Discrete Mathematics, 2008)
  • Zekovic, B. (Algebra and Discrete Mathematics, 2008)
    In the paper we study connections between (co)modules over n-ary and binary (co)algebras.
  • Bondarenko, V.M.; Tertychna, O.M. (Algebra and Discrete Mathematics, 2008)
    Let I be a finite set without 0 and J a subset in I×I without diagonal elements (i,i). We define S(I,J) to be the semigroup with generators ei, where i∈I∪0, and the following relations: e0=0; e2i=ei for any i∈I; eiej=0 ...
  • Howie, J.; Williams, G. (Algebra and Discrete Mathematics, 2008)
    A generalized triangle group is a group that can be presented in the form G=⟨x,y |xp=yq=w(x,y)r=1⟩ where p,q,r≥2 and w(x,y) is a cyclically reduced word of length at least 2 in the free product Zp∗Zq=⟨x,y |xp=yq=1⟩. ...


Розширений пошук


Мій обліковий запис