Показати простий запис статті

dc.contributor.author Clelland, J.N.
dc.contributor.author Moseley, C.G.
dc.contributor.author Wilkens, G.R.
dc.date.accessioned 2019-02-19T18:35:52Z
dc.date.available 2019-02-19T18:35:52Z
dc.date.issued 2013
dc.identifier.citation Geometry of Optimal Control for Control-Affine Systems / J.N. Clelland, C.G. Moseley, G.R. Wilkens // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 58A30; 53C17; 58A15; 53C10
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.034
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149206
dc.description.abstract Motivated by the ubiquity of control-affine systems in optimal control theory, we investigate the geometry of point-affine control systems with metric structures in dimensions two and three. We compute local isometric invariants for point-affine distributions of constant type with metric structures for systems with 2 states and 1 control and systems with 3 states and 1 control, and use Pontryagin's maximum principle to find geodesic trajectories for homogeneous examples. Even in these low dimensions, the behavior of these systems is surprisingly rich and varied. uk_UA
dc.description.sponsorship This research was supported in part by NSF grants DMS-0908456 and DMS-1206272. We would like to thank the referees for many helpful suggestions, which significantly improved the organization and exposition of this paper. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Geometry of Optimal Control for Control-Affine Systems uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис