Наукова електронна бібліотека
періодичних видань НАН України

Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Qu, C.
dc.contributor.author Song, J.
dc.contributor.author Yao, R.
dc.date.accessioned 2019-02-19T18:35:09Z
dc.date.available 2019-02-19T18:35:09Z
dc.date.issued 2013
dc.identifier.citation Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 37K10; 51M05; 51B10
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.001
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149204
dc.description.abstract In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-dimensional sphere Sn(1). Integrability to these systems is also studied. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. The authors would like to thank the anonymous referees for constructive suggestions and comments. This work was supported by the China NSF for Distinguished Young Scholars under Grant 10925104 and the China NSF under Grants 11071278 and 60970054. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис