Анотація:
We construct a Lax pair for the E₆⁽¹⁾ q-Painlevé system from first principles by employing the general theory of semi-classical orthogonal polynomial systems characterised by divided-difference operators on discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lattices - the q-linear lattice - through a natural generalisation of the big q-Jacobi weight. As a by-product of our construction we derive the coupled first-order q-difference equations for the E₆⁽¹⁾ q-Painlevé system, thus verifying our identification. Finally we establish the correspondences of our result with the Lax pairs given earlier and separately by Sakai and Yamada, through explicit transformations.