Показати простий запис статті
dc.contributor.author |
An, H. |
|
dc.contributor.author |
Rogers, C. |
|
dc.date.accessioned |
2019-02-18T12:44:36Z |
|
dc.date.available |
2019-02-18T12:44:36Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 34A34; 35A25 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.057 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148449 |
|
dc.description.abstract |
A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті