На основе самосогласованной математической модели процессов энерго-, массо- и электропереноса в столбе и анодной области электрической дуги с тугоплавким катодом проведен сравнительный численный анализ тепловых, электромагнитных и газодинамических характеристик дуговой плазмы для сжатой (плазменной) и свободногорящей аргоновой дуги с медным водоохлаждаемым анодом. Результаты расчета характеристик плазмы столба дуги показывают, что распределения плотности электрического тока, температуры и скорости плазмы сжатой дуги могут в значительной мере отличаться от соответствующих распределений для свободногорящей дуги в зависимости от тока дуги, диаметра канала сопла плазмотрона и расхода плазмообразующего газа. Характеристики прианодного слоя плазменной дуги также существенно отличаются от соответствующих характеристик свободногорящей дуги в зависимости от указанных выше параметров режима горения дуги. Таким образом, варьируя ток дуги, диаметр канала сопла плазмотрона и расход плазмообразующего газа, можно эффективно управлять характеристиками теплового, электромагнитного и, особенно, динамического воздействия сжатой дуги на поверхность металла анода.
Self-consistent mathematical model of the processes of energy-, mass- and electric transfer in the column and anode region of the electric arc with refractory cathode was used as a basis to perform numerical analysis of thermal, electromagnetic and gas-dynamic characteristics of arc plasma for constricted (plasma) and free-burning argon arc with copper water-cooled anode. Results of calculation of characteristics of arc column plasma show that distributions of electric current density, temperature and velocity of constricted arc plasma can greatly differ from the respective distributions for free-burning arc, depending on arc current, plasmatron nozzle channel diameter and plasma gas flow rate. Characteristics of near-anode layer of plasma arc also differ significantly from the respective characteristics of free-burning arc, depending on the above arcing mode parameters. Thus, by varying arc current, plasmatron nozzle channel diameter and plasma gas flow rate, it is possible to effectively control the characteristics of thermal, electromagnetic and, particularly, dynamic impact of the constricted arc on anode metal surface.