Показати простий запис статті
dc.contributor.author |
Grandati, Y. |
|
dc.contributor.author |
Quesne, C. |
|
dc.date.accessioned |
2019-02-13T17:17:58Z |
|
dc.date.available |
2019-02-13T17:17:58Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials / Y. Grandati, C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 81Q05; 81Q60; 42C05 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.061 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147132 |
|
dc.description.abstract |
We construct rational extensions of the Darboux-Pöschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynomials, which, in the first case, depend on a continuous parameter. We also prove that these extended potentials possess an enlarged shape invariance property. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of
Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті