Показати простий запис статті
dc.contributor.author |
Asakawa, T. |
|
dc.contributor.author |
Watamura, S. |
|
dc.date.accessioned |
2019-02-09T20:28:37Z |
|
dc.date.available |
2019-02-09T20:28:37Z |
|
dc.date.issued |
2010 |
|
dc.identifier.citation |
Twist Quantization of String and Hopf Algebraic Symmetry / T. Asakawa, S. Watamura // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 21 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 83E30; 81T75; 53D55 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2010.068 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146532 |
|
dc.description.abstract |
We describe the twist quantization of string worldsheet theory, which unifies the description of quantization and the target space symmetry, based on the twisting of Hopf and module algebras. We formulate a method of decomposing a twist into successive twists to analyze the twisted Hopf and module algebra structure, and apply it to several examples, including finite twisted diffeomorphism and extra treatment for zero modes. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html.
The authors would like to thank M. Mori for collaboration and useful discussions. We also thank to Dr. U. Carow-Watamura for useful comments and discussions. This work is supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, No. 19540257. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Twist Quantization of String and Hopf Algebraic Symmetry |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті